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Abstract—Understanding intra-urban human mobility patterns and their potential driving forces are vital to city planning and
commercial site selection. In this paper, we first investigate the functions of urban regions and how different region types dynamically
influence people’s trip decisions. Furthermore, we characterize urban circadian rhythms by time-vary inter-regional transition
probabilities between these regions with different functions, and integrate them into intervening opportunity model to predict human
mobility. Public transportation card data in Shanghai are used to demonstrate the effectiveness of the model in terms of station
passenger flows, travel time and trip flux. By taking regional function into consideration, the proposed model significantly improved the
prediction accuracy. Quantitative analysis ulteriorly indicates that trip intentions and regional features are critical elements in trip flux
prediction, especially in the afternoon and evening when people have an abundance of opportunities to travel by their own volition.
When the function of a certain region changes, our model is able to make reasonable predictions accordingly. The results indicate the
importance of considering individual travel motivation and regional function in modeling human mobility. The proposed model could
serve as a guide for popularity and trip flux prediction in urban planning and reconstruction.

Index Terms—Human Mobility, Urban Structure, Mobility Predictions, Social Data Analysis
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1 INTRODUCTION

C ITY is a complex spatial system composed of regions
with distinctive features and interregional citizen trip

fluxes. Identifying regional features and their impact on
intra-urban human movement is crucial to the understand-
ing of urban dynamics and the driving mechanism of travel
choice behavior. In recent years, ubiquitous social signal sen-
sors have enabled us to obtain large-scale human mobility
data more conveniently and cheaply, so as to quantitatively
study people’s travel choices in the microcosmic aspect and
determine the characteristics of population mobility consid-
ering individual travel choices and regional features in the
macrocosmic aspect. Currently, human mobility data and
models [1] have been widely applied to urban planning [2],
[3], [4], traffic flow prediction and optimization [5], [6], [7],
[8], [9], early warning and risk evaluation systems [10], [11],
[12], [13], and reflecting the socioeconomic characteristics of
cities [14], [15], [16].

Researches in the past decade have achieved satisfying
results in human mobility pattern and regional feature iden-
tification. However, to the best of our knowledge, exploring
the connections between these two aspects and combining
them dynamically to predict large-scale intra-urban human
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flow is still an open issue. In real life, people’s travel
decisions highly depend on travel purposes and departure
time. An office worker is more likely to go to a social place
rather than another office building after work at 17 o’clock.
He/she would also incline to go to a social occasion close
to his/her workplace with rich social activities, since it’s
human nature to visit a place not too far, and/or a place with
more choices. This kind of travel characteristics of citizens
in different time periods of a day are worthy of further
study. Motivated by the above travel strategies, a model
based on regional features and intervening opportunity
theory is proposed to simulate the intra-urban human mo-
bility observed from more than 100 million pieces of metro
passage trip records in Shanghai, China. By analyzing the
passengers’ entrance/exit fluxes of a certain metro station
in different time periods of the day, the region features
around the station can be characterized. All sorts of across-
region trips constitute the circadian rhythm of the city. The
rhythm of the city and the above natural characteristics of
human travel constitute the starting point of our model. By
comparing the model results with the large-scale trip data
of Shanghai Metro, we validate that the proposed model can
better predict urban population flow, and can respond to the
changes of the major sources of population flow caused by
the change of regional functions. This analyzation provides
potential guidance for predicting the popularity and impact
on the transportation network of regional function changes
or new urban area development. More concretely, the major
contributions of this work are summarized as follows.

• We capture the circadian rhythms of Shanghai and
investigate the regional functions via clustering s-
tations with similar entrance/exit flow features by
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applying K-Means algorithm. Distinct regional func-
tions are characterized by clusters, which consist of
residential areas, comprehensive regions and work-
ing regions.

• In order to illustrate the effects of regional features,
we propose a combined model by integrating inter-
regional transition probability into the intervening
opportunity model to predict intra-urban human
mobility on an hourly basis. Based on more than
100 million pieces of metro passage trip records in
Shanghai, the new model is tested under different
cluster numbers. Extensive comparisons show that
the model coincide well with the empirical data in
multiple aspects, including destination station pas-
senger flow, travel time distribution, trip fluxes and
its distribution. The prediction accuracy is signifi-
cantly improved by introducing regional functions,
especially in the afternoon and evening with higher
flux entropy when people have more opportunities
of autonomous choices.

• We further investigate the effectiveness of the pro-
posed model by exploring the major sources of
human flow before and after functional changes.
Longhua Station, the function of which changed
from ”comprehensive” to ”working” between the
two studied time windows, is taken as a typical
example to illustrate how our model can predict the
major change in fluxes. Results show that our model
can adjust the prediction results according to the
change of regional function to conform to the actual
situation.

2 RELATED WORK
With the development of big data and IoT Technology,
numerous outstanding researches on human mobility and
urban structure have emerged in the past decade. In this
section, we review relevant literature from the following
three aspects.

Human mobility. Classical researches on human mobil-
ity mostly focus on population distribution and departure-
destination distance. In terms of geographical heterogeneity,
classical gravity model performed well on various datasets
[17], [18], [19]. Inspired by the job-applying scenario, [20]
pointed out that the number of trips from location i to
location j are affected by both the population of the two
locations and the total population of the circular area cen-
tered at location i with a radius of the distance between i
and j. The results of this radiation model is different ap-
proaches but equally satisfactory results with that of classi-
cal intervening opportunities model [21]. Motivated by this
finding, several improved population movement prediction
models based on diverse spatial scales ranging from city
scale to national scale have been proposed [22], [23], [24],
[25]. Meanwhile, taking individual mobility characteristics
such as memory effect [26] and driving force underlying
individual movement [27], [28], [29], [30] into account is
of great benefit to our understanding of macro mobility
patterns. It is also critical to consider the unique nature
of human travel strategy when studying human mobility,
since citizens seldom walk randomly like animals [31], [32].

The circadian rhythm of a city is deeply influenced by these
travel strategies.

Another way to explore people’s travel patterns is from
the perspective of statistics and knowledge learning. [33]
proposed a multidimensional Markov model and realized
precise trajectory prediction. By learning the mobility be-
haviors of different users, [34] used a Bayesian mixture
model to describe users’ mobility patterns.

Regional features and functions. The features and char-
acteristics of regions can be extracted and learned from
large-scale population flow data. Using pick-up/set-down
data extracted from taxi traces at different time interval-
s in the selected areas as training input, [35] compared
several common machine learning algorithms in predicting
the functions of areas in Hangzhou, China. [36] analyzed
the node number of individual mobility motifs to describe
the relationship between motifs and urban land use. Using
geolocated social media data, [37], [38] characterized urban
landscapes through the K-Means clustering algorithm.

Human mobility patterns and geographical features.
Recent technology development has facilitated the obtaining
of multi-dimensional urban data. Some researches focused
on describing and predicting human mobility patterns by
combining various geographical data sources. [39] set up a
model based on individual and collectivity’s past trajectory
and the geographical features of the area to predict individ-
ual travel destination. [40], [41] combined the conceptions of
functional distance and land-use function complementarity
indices based on regional functions with improved gravity
model and gave out decent regression results. Using smart
card data and POI data, [42] analyzed the regional mobility
patterns and used ANN to link the mobility patterns with
the regional properties. [43] learned the urban forms of
residential communities from heterogeneous human mo-
bility data and POI, and applied it to real estate ranking
and restaurant popularity prediction. [44] used the land-use
transition matrix to calculate population distribution, and
verified their results by gravity model. In this paper, besides
geographical features, we also consider departure time and
trip intentions to predict human mobility fluxes. We further
analyze the fluctuations in prediction accuracy at different
times of a day, and explore the reasons behind.

3 DATA ANALYSIS

Shanghai Public Transportation Card can be used on metro,
bus, taxi and ferry in Shanghai. The card data could serve
as a sample to analyze human mobility in urban areas. We
adopt Shanghai Public Transportation Card data provided
by the SODA(Shanghai Open Data Apps) as the data source,
among which only metro records contain information of
both the entry station and the exiting station. Thus we
extracted 129,964,604 metro trip records in September, 2016
from the dataset. Each record contains card ID, station name
and entering/exiting time. During that period, Shanghai
metro system had a total of 14 lines and 289 stations and
bore nearly half of the public transportation flow of the w-
hole city. Card IDs are ignored, since we are only interested
in the trip fluxes between stations in different time periods
rather than individual identity. The regional flow around a
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Fig. 1. Metro stations in Shanghai. Stations in the same color are
clustered in the same cluster. Newly built stations which haven’t been
color-filled are beyond the scope of this article. This map is a simplified
presentation and partially reflects real geographic location information.

station can be represented by the flow of this station. For
simplicity, we refer to the region around station i as region i.

Shanghai metro begins operation at around 5 o’clock and
stops operation at around 24 o’clock, while the operating pe-
riod of each station may vary. Thus, we only consider travels
starting between 7 and 22 o’clock (a 15-hour-duration) when
all stations are open with a non-negligible passenger flow.

We first cluster the stations with similar features accord-
ing to the entrance/exit dynamics. For each station, the
entrance/exit dynamic is defined as a normalized temporal
sequence consisting of entrance/exit flow values in the
time interval of an hour. Since travel behavior in weekdays
and weekends can be rather different [29], [45], [46], we
discuss these two cases respectively. Based on the above
assumptions, the passenger flow dynamic of a station can
be described by a 60-dimensional vector comprised of t-
wo 15-dimensional normalized entrance flow subvectors
and two 15-dimensional normalized exit flow subvectors
on weekdays and weekends, respectively. Specifically, we
define F exitτ (d, S) as the exit flow in time interval τ of day
d in station S and D1 as the set of the studied weekdays.
τ ∈ {[t, t + 1) : t ∈ [7, 21] ∩ Z} represents the one-hour
duration that begins at a certain hour on the hour and ends
at the next hour on the hour. A normalized element of the
exit flow vector on weekdays is thus defined as

vexitτ (S) =

∑
d∈D1

F exitτ (d, S)∑
d∈D1

∑[21,22)
τ ′=[7,8) F

exit
τ ′ (d, S)

, (1)

and elements in the other three subvectors can be calculated
similarly. Together, the four subvectors compose the vector
that describes the dynamic features of a metro station.

The K-Means algorithm is applied to cluster station-
s according to the above 60-dimensional vector. On our
dataset, K-Means has the best performance among common
unsupervised clustering algorithms regarding 3 clustering

evaluation indexes (see Appendix for details). Three clusters
are derived and Fig. 1 shows the geographical location of all
metro stations in Shanghai and their corresponding cluster-
ing results. The city center is covered by stations in clusters
1 and 2. Fig. 2 demonstrates the dynamics of stations in
each cluster. Fig. 2(a, b) show that regions in cluster 1 fit the
characteristics of working regions, with population inflow
peaks in the morning and outflow peaks in the evening,
while regions in cluster 2 may be comprehensive regions,
with crowd inflow and outflow peaks both in the morning
and evening. These comprehensive and working regions are
roughly included in the Shanghai Middle Ring Road, in
accordance with urban function and traffic planning. Most
stations in cluster 3 are located in suburban areas. As is seen
in Fig. 2(c), among the passengers departing from stations in
cluster 3 on weekdays, there are 2 obvious peaks departing
in the morning and arriving after work hours, indicating
that these suburban regions are of residential functions. It’s
worth noticing that the suburban areas also own several
stations in cluster 1 and cluster 2. These stations are the sub-
centrals of the corresponding regions, including suburban
government institutions and high-tech zones. This kind of
polycentric structure [47], [48] is the nature of a metropolis
like Shanghai.

The transition probability between clusters in different
time intervals can be easily computed from the empirical
data, as shown in Fig. 3. This transition probability reflects
the urban circadian rhythms and the motivation of people’s
travelling patterns in different time periods. For instance,
at 8 o’clock, more than 60% of the trips end at stations
in cluster 1, regardless of the departure station, indicating
that people tend to go downtown in this duration. That is
because people tend to go to working places, usually located
in downtown areas, in this period. In the afternoon or after
work, however, people incline to departure for places of
leisure and recreation, indicating a significantly different
driving force with the early peak. This driving force is
considered a prime motivation in our prediction model.

4 MODEL

In this section, we combine intervening opportunity theory
and transition probability calculated above to build a model
to predict trip fluxes. According to the theory of intervening
opportunities [21], the probability of an individual going
to a certain region is directly proportional to the number
of opportunities at that region and inversely proportional
to the number of intervening opportunities. Following and
extending this theory, we assume that the attractiveness of
region j to region i is determined by the number of oppor-
tunities Oj in j, and the rank value. Thus, this attraction can
be expressed as:

A(j ← i) ∝ Ojranki(j)α, (2)

where α = −0.84 is obtained in [49], for it fits well in
34 cities despite the variations in political and economic
situations, and

ranki(j) = |{k : d(i, k) ≤ d(i, j), k ∈ Cλj}| (3)

in which | · | represents the element number in a set. Cλj
is the cluster of stations partitioned by K-Means algorithm
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Fig. 2. The average and the 91% confidence interval of the entrance/exit
dynamics of stations when the clustering number is 3. The dynamics
of these three types of stations obtained by clustering have completely
different pattern and explicit rational explanation: (a) The dynamics of
stations in working regions. (b) The dynamics of stations in compre-
hensive regions. (c) The dynamics of stations in residential areas. In
the cluster of residential regions, there exists a pronounced peak of
departure between 7 and 9 o’clock. Meanwhile in the cluster of the
working regions, a remarkable peak appears between 8 and 9 o’clock.
This is a typical commuting pattern in the morning rush hour, indicating
the distinct functions of different regions in city and the interaction
between these regions at the aggregation level.
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Fig. 3. The transition probability of all clusters when K = 3 on week-
days.

which contains station j. d(i, j) is the cost of travelling from
station i to station j. Generally, Euclidean distance or trip
distance obtained by shortest path algorithm is selected as
the cost. In the circumstances of metro case, the interchange
behavior [45], [50] and varied train speeds can hardly be
reflected by the conception of physical distance, but they
do influence passengers’ behavior. Therefore, we adopt the
average travel time between pairs of stations estimated
from the empirical data as the travel cost. Following the
assumption in [22], [26], we assume that the number of
opportunitiesOj at region j is proportional to the total daily
passenger flow in station j throughout the day, which can
easily be calculated from the dataset. The ranki(j) reflects
the ranking of the trip cost from station i to station j in the
costs of all trips starting at station i to all the other stations.
The higher the cost, the lower j ranks against i.

Considering the transition probability from one region
to another (or itself) as a known premise, the transition flux
of travels from i to region j in τ can be modeled as

Tτ (i→ j) = Tτ (i)pτ (Cλi → Cλj )
A(j ← i)∑

k∈Cλj
A(k ← i)

, (4)

where Tτ (i) is the total number of passengers departing
from station i in τ , and pτ is the transition probability
between clusters.

A(j←i)∑
k∈Cλj

A(k←i) reflects the effect of competition of at-

tractions. For a passenger at departure station i whose
destination is one of the regions in Cλj , all stations in Cλj
have attraction to the passenger. The competitiveness of
potential destination j will be weakened if there exist a
certain number of stations with opportunities closer to i
than j, resulting in a lower possibility of traveling from i
to j. Relatively speaking, if a potential destination j has a
large number of attractive ”opportunities”, then the compet-
itiveness of region j is stronger. Once the departure station
cluster Cλi and destination station cluster Cλj are fixed, all
competitive regions must belong to the same cluster, for
such competition won’t exist between regions with different
features.

5 RESULTS

5.1 Model Validation
To validate the proposed mobility model, we compare the
computational results of our model with the empirical
data. We concentrate on four critical aspects: trip fluxes
between stations, distribution of trip fluxes, exit passenger
flow of each station, and distribution of passenger travel
time. We analyze the model performance under different
cluster numbers K = 1, 3, 5 and 9, representing different
degrees of regional function segmentation. When the clus-
tering number is 1, our model degenerate to the simple
intervening opportunities model. 9 clusters are substantial
enough to effectively classify regional functions comparing
with related literatures: [27] classifies travel purposes into 6
categories, and 8 regional functions are extracted in [35].

Trips starting between 17 o’clock and 18 o’clock on
weekdays are taken as an example. Fig. 4 demonstrates
that the our proposed model can effectively and accurately
predict trip fluxes and travel time patterns. We notice that
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Fig. 4. Comparing the predictions of our model and the empirical data. Each row represents the indicators to be compared under the same
clustering number. The clustering number is one in (a-d) and three in (e-h). (a, e) Comparing the observed trip fluxes with the predicted trip fluxes.
The translucent blue points are scatter plot for fluxes between each pair of stations. The red line, as a guide of eyes, is of slope 1. The boxplots
are used to describe the distribution of the number of predicted trip fluxes in different bins of the number of actual trip fluxes. The green diamond
correspond to the mean number of predicted travelers in that bin. The ends of the whiskers represent the 9th percentile and the 91st percentile.
(b, f) Comparing the observed and predicted numbers of exit people. The red line is y = x. (c, g) Travel time distribution. The empirical travel time
approximately obeys log-normal distribution with µ = 4.006 and σ = 0.3937, shown in (c). (d, h) Trip fluxes distribution. The empirical trip fluxes
distribution is well approximated by power-law with power exponent γ = 2.0329, shown in (d).

the results follow a similar pattern when K ≥ 3, thus we
only compare the case of K = 1 with K = 3 as illustrated
in Fig. 4. Fig. 4(a, e) show that for the clustering number
1, 3 respectively, the trip fluxes predicted by our model
coincide well with actual data. By observing the whiskers
of boxplots, it is easy to notice that when K = 3, the
range of confidence interval is smaller, meaning that the
predicted fluxes between stations are closer to real data in
statistical sense. Fig. 4(b, f) illustrate the predicted and actual
numbers of exit passengers in all stations. It can be noticed
that our model, with the clustering number K = 3, offers
a more authentic approximation than the pure intervening
opportunities model. Fig. 4(c, g) are the comparisons of
passengers’ travel time distributions. The empirical travel
time approximately obeys log-normal distribution. If all
stations are in one cluster, the travel time follows an ap-
proximate exponential distribution which is monotonically
decreasing. When K = 1, namely when all stations are in
one cluster, the travel time of the intervening opportunities
model approximately obeys exponential distribution, which
is monotonically decreasing; While when taking different re-
gional features into account, the passenger number shows a
trend of decrease after increase with the increasing of travel
time. There exists a peak travel time bin which is consistent
with the statistical result of the actual data. The existence of
such difference is fully reasonable. In the simple intervening
opportunities model, individual travel behavior is solely
influenced by the number of intervening opportunities and
trip cost, resulting in that one tends to travel to regions with

lower travel time costs. In our model, on the other hand,
when K is larger than one, an individual necessitates some
additional consideration on trip intentions. The candidate
destinations may all be far from the departing location, re-
sulting in longer travel time. Fig. 4(d, h) show the predicted
and actual trip fluxes distributions. The empirical trip fluxes
approximately obey power-law distribution, which agrees
with the previous finding in [47]. The model prediction
again fits ideally with the empirical data.

5.2 Quantitative Analysis of the Prediction Accuracy

In this subsection, we quantitatively analyze the prediction
accuracy and discuss how clustering number affects the
accuracy of the proposed model. The Sørensen similarity
index (SSI) and the root mean square error (RMSE) are
adopted to compare the difference between actual and mod-
el fluxes, and the Hellinger coefficient is used to compare
the difference regarding travel time distribution and inter-
station trip flux distribution.

Sørensen similarity index (SSI) is a statistic used for
comparing the similarity of two samples. A modified ver-
sion of the index is applied in this paper to measure the
extent of consistence between trip fluxes and exit passenger
flow of the actual data and our mobility prediction model:

SSIflux(τ) =
1

N2

N∑
i

N∑
j

2 min(T ′τ (i→ j), Tτ (i→ j))

T ′τ (i→ j) + Tτ (i→ j)
;

(5)

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on January 31,2022 at 01:37:05 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3047406, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 6

SSIexit(τ) =
1

N

N∑
i

2 min (S′τ (i), Sτ (i))

S′τ (i) + Sτ (i)
, (6)

where N = 289 is the station number in all, Tτ (i→ j) is the
trip flux predicted by our model from station i to station j in
time period τ and T ′τ (i→ j) is the actual trip flux, Sτ (i) and
S′τ (i) are the predicted and actual exit flow of station i in τ .
The SSI ranges between 0 and 1, and SSI = 1 indicates
that the two samples match perfectly.

Root Mean Squared Error(RMSE) is used to measure
the differences between values predicted by a model and
the values observed. In our scenario, it has the following
two forms:

RMSEflux(τ) =

√√√√ 1

N2

N2∑
i=1

(T ′τ (i→ j) + Tτ (i→ j))2, (7)

RMSEexit(τ) =

√√√√ 1

N

N∑
i=1

(S′τ (i)− Sτ (i))2, (8)

The smaller these two values, the higher the prediction
accuracy of the model.

Hellinger coefficient is used to quantify the similarity
between two probability distributions. Denote p(k) and q(k)
as the probability density function of two discrete distribu-
tions within the same domain D ,the Hellinger coefficient is
defined as:

RH =
∑
k∈D

√
p(k)q(k). (9)

This coefficient is used to compare the model and the
empirical distribution of the travel time and the trip fluxes.
All indicators in equation 5 to 9 are time varying in our case.

SSI is an index commonly used in human flux predict-
ing accuracy evaluation. It emphasizes on the proportion of
the difference between the predicted and actual values. Con-
sider two fluxes between different metro stations. Assume
that the actual value of the flux between two metro stations,
named flux A, is 1, and the predicted flux is 50 passengers.
While the predicted and the actual flux between another
two stations, named flux B, is 2400 and 2000 respectively.
From the perspective of prediction accuracy, the prediction
result ofB is more acceptable. From the perspective of metro
operating, however, the absolute number of passengers
means the actual load on the line, and the influence of the
predicting error of flux A on the operation of the whole
metro line is obviously less than that of B. Therefore, SSI
and RMSE are both used to quantitatively describe the
prediction accuracy of human fluxes from the perspective
of proportion and absolute value.

In Fig. 5, we demonstrate the quantitative calculation
results of the above three indices between the empirical
data and the prediction results of our model in various
time intervals on both weekdays and weekends. Generally
speaking, there are similar patterns between weekends and
weekdays. In all subfigures, the three cases containing inter-
cluster transitions(the orange, green and red lines repre-
senting cluster numbers of 3, 5 and 9, respectively) have a
similar pattern, whereas results of the pure intervening op-
portunities model (the blue line representing cluster number
of 1) have distinct patterns. In most cases, a larger clustering
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Fig. 5. Quantitative comparisons of the empirical data and the
results of our model in various time interval. The first column is the
comparisons of the weekdays and the second column is the compar-
isons of the weekends. (a, b, f, g) The SSI of the fluxes and the numbers
of exit passengers. (c, d, h, i) The RMSE of the fluxes and the numbers
of exit passengers. (e, f, j, k) The Hellinger coefficient of the travel time
distribution and the edge weight distribution.

number indicates a more accurate result. Furthermore, in
the afternoon and evening, our model has especially huge
advantages against the pure intervening opportunities in
prediction accuracy. Additionally, when RMSE is used as
the evaluation index, our model is obviously better than
pure intervening opportunities model in all time periods;
while for the SSI index, our model and pure intervening
opportunity model have very close evaluation results in
the morning. Accordingly, our model performs better in
estimating the absolute number of human fluxes, which
might because that the prediction bias of our model mainly
falls on station-pairs with less human fluxes (see Fig. 4(e)).
Similar results are derived in predicting the number of
arriving passengers at different stations. In the statistical
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Fig. 6. Dynamic entropy of the stations on weekdays. The shadow is the
91% confidence interval.

sense, as shown in Fig. 5(e-k), all RH indexes are close to
1, indicating that the model has an excellent performance
throughout the whole day.

As mentioned above, Fig. 5 shows that our model has
a better performance than the pure intervening opportu-
nities model especially in the afternoon and evening. This
phenomenon may due to the fact that people have a larger
chance to travel by their own volition after noon, lading to
greater competition in regions in the same cluster. To verify
this hypothesis, we calculate the weighted average entropy
of stations’ entrance flows and demonstrate the result in
Fig. 6. A higher entropy reflects a more balanced choice of
travel destinations, indicating that people have more free-
dom to choose the place of their next activity. The entropy
of station i in τ is Ei(τ) = −∑

j pτ (i → j) log(pτ (i → j)),

where pτ (i → j) =
T ′
τ (i→j)∑
k T

′
τ (i→k)

is the actual probability of
a person going from i to j in τ . The entropy of a station
indicates the diversity of travel destinations and can further
infer people’s ability to make autonomous traveling. The

weighted average entropy Ew(τ) =
∑
i[Ei(τ)

∑
j T

′
τ (i→j)]∑

i

∑
j T

′
τ (i→j)

is
used to describe the global diversity of travel purposes. In
the morning peak, this entropy is obviously low, since it is
impossible for people to choose their workplace arbitrarily
every day. After 14 o’clock, the weighted average entropies
are higher, showing that people make more abundant travel
choices. During this period, people have a larger chance
of travelling by their own volition, so the competition in-
troduced by our model happens. Our model captures this
kind of competition in regions in the same cluster, so it has
achieved better prediction results especially in the afternoon
and evening.

5.3 Model predictability after the changes of regional
functions
With the pace of urban construction, the functions of some
regions may change, and the trip fluxes of these regions may
change accordingly. In order to further verify the validity
and the predictability in functional change-induced flux
changes of our model, we extract the trip data of April
2015 from Shanghai Public Transportation Card data, and
compare it with the data of September 2016. The topolog-
ical structures of Shanghai metro network are the same in
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Fig. 7. The changes of entrance/exit dynamics of Longhua Station in
April 2015 and September 2016. When the clustering number is 3, the
cluster label of Longhua Station changes from 2 (comprehensive region)
to 1 (working region).

these two periods. The functions of most regions remain
unchanged, and most functionally changed regions are in
the suburbs where the topological structure of the metro
line is simple, thus the changes of regional functions have
little effect on actual trip fluxes in these suburban regions.
As an exception, Longhua Station is located near the city
center, as labeled by a green circle in Fig. 8. During the
studied period, a renovation project in the area around
Longhua Station is underway [51]. WhenK = 3, its function
changes from ”comprehensive region” to ”working region”,
as shown in Fig. 7. Taking 18:00-19:00 as an example, we
calculated the passenger fluxes that ends at Longhua Station
in 2015 and 2016, respectively. During the two periods, the
top 30 stations in the number of departures are recorded,
defined as ”major source stations” here. As shown in Fig. 8,
the major source stations of Longhua Station are obviously
different in these two periods. Only 13 stations are on the
top 30 lists of both periods, indicating that the change of
regional function may bring about changes in human fluxes.
In the meantime, while our model can correctly predict
20 of the top 30 stations in 2015, it still can successfully
identify 19 stations in 2016, proving that our model can
adjust the prediction results according to the change of
regional function to conform to the actual situation. It’s
remarkable that 5 stations marked by a blue circle in Fig. 8(b)
turn into the major source stations in 2016, and our model
successfully capture the change. The total departure number
of these 5 stations increased from 1.75 million to 2.20 million
in the whole month, while the average number of trips to
Longhua Station significantly increased from 7465 to 42242.
The slight increase of Ti can hardly cause this kind of burst.
We believe that it should be attributed to functional changes
of region Longhua, which is reflected by our model.

Further, we study the changes of the major source sta-
tions of all stations between these two month, and examine
to what extent our model can predict these differences. Let
the set of major source stations in 2015 be S2015 and S2016

in 2016, and the set of major source stations predicted by
our model is S′2016. Then the station set that is not included
in S2015 but can be captured by our model in S2016 can be
expressed as Š = (S2016 − S2015)

⋂
S′2016. Fig. 9 shows the

relationship between |S2016 − S2015| and |Š|, and compare
it with the expectations of random selected station set that
is in the set S2016 − S2015. From this figure we can see that
although the major source stations changes with time, more
than one-third of these changes can be predicted.
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Fig. 8. The actual and predicted major source stations of Longhua Station in (a) April 2015 and (b) September 2016. Longhua Station is labeled in
green. The actual major source stations are labeled in orange. If our results match the practical data, white ticks are marked, or else red crosses
are marked.
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Fig. 9. The changes of the major source stations and the ability of the
model to predict these changes. The pink dots are the expectations of
random selected station set that in the set of S2016−S2015. The boxplot
expresses the same meanings as what expressed in Fig. 4. There is
only one |S2016 − S2015| value greater than 17, which has no statistical
significance.

5.4 Discussions

We find from the prediction results that when the number of
clusters is greater than or equal to 3, the prediction accuracy-
time curves of the model have very similar patterns, and
the prediction accuracy increases slightly with the increase
of the number of clusters. What’s more, when the clustering
number is 3, we can deduce the practical functions of the 3
kinds of regions: working, residential and comprehensive.
We also notice a similar result in [52], in which the non-
negative matrix factorization and optimization methods
were employed, discovering that only when the number
of bases is 3, the factorization results can be stable. These
three bases have similar practical significance: commuting

between home and workplace, workplace to workplace, and
others such as leisure activities. Therefore, when considering
clustering number, choosing K = 3 leads to both clear
practical significance and sufficient accuracy. Furthermore,
for urban planners who have detailed geographic informa-
tion data, they can also aggregate point of interests [24],
[53] in different regions in order to acquire more detailed
prediction results and clearer practical significance.

Individual travel motivation including trip purpose and
intervening opportunities is key to studying the macroscop-
ic human mobility fluxes from the microscopic perspec-
tive. Such microscopic perspectives concerning individual
mobility laws [1] will further assist us in modeling trip
fluxes and detecting urban characteristics. SSIflux in Fig. 5
shows a trend of first increase and then decrease with time,
indicating that our model has a good performance in the
afternoon. It is probably because individual travel in the
morning and evening are confined to two fixed location:
working place and home, so citizens are not able to choose
their travel destination entirely through competition mech-
anism in our model. When an individual applies for jobs,
salary is the major consideration rather than trip cost [20],
[54], which is beyond the discussion of competitiveness
in our model, affecting the accuracy of our model in the
morning. Similarly, one has to go to his own home after
sunset without considering the attractions of others’ home.
Some previous studies have considered home as a special
spot [27], [30], being a way to exploit human traits and
dispositions.

6 CONCLUSIONS

Human movement between regions with different functions
and within regions with the same function constitutes the
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circadian rhythm of the city. In this paper, we cluster the
regions with similar functions and investigate how people’s
trip decisions are dynamically influenced by these different
kinds of regions. We focus on human travel motivation
and take both intervening opportunities and interregional
transition probability into consideration to predict human
mobility. When travel motivation is introduced, the predic-
tion accuracy is significantly improved, especially in the af-
ternoon and evening. The proposed model can successfully
predict popularity of regions with different features, which
is an important element for estate developers and individual
enterprises to decide on the location of business premises
and projects. Our model can also capture the fluxes between
regions, which is critical for urban planners to understand
whether the regional orientation of a new developing region
is reasonable and its future impact on urban traffic. From
the perspective of travel time distribution and trip flux
distribution, the prediction results of our model conform
ideally with empirical data. When the function of a region
changes, our model can predict fluxes in the new scene
corresponding to this change. It has become a new thought
in human mobility modelling and urban structure analyzing
to take both regional features and individual mobility laws
into account. The development and interoperability of the
IoT [55] can provide massive data in multiple dimensions,
enabling us to describe and predict individual and urban
dynamics more precisely. Ultimately, it will facilitate the
construction of smart city and help improve the convenience
and comfortability of city life.
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González, “Planning for sustainable cities by estimating building
occupancy with mobile phones,” Nature communications, vol. 10,
no. 1, pp. 1–10, 2019.

[5] J. Wang, D. Wei, K. He, H. Gong, and P. Wang, “Encapsulating
urban traffic rhythms into road networks,” Scientific reports, vol. 4,
no. 1, pp. 1–7, 2014.

[6] K. He, Z. Xu, P. Wang, L. Deng, and L. Tu, “Congestion avoidance
routing based on large-scale social signals,” IEEE Transactions on
Intelligent Transportation Systems, vol. 17, no. 9, pp. 2613–2626, 2015.

[7] S. Çolak, A. Lima, and M. C. González, “Understanding congested
travel in urban areas,” Nature communications, vol. 7, no. 1, pp. 1–8,
2016.

[8] X. Yang, A. Chen, B. Ning, and T. Tang, “Measuring route diversity
for urban rail transit networks: A case study of the beijing metro
network,” IEEE Transactions on Intelligent Transportation Systems,
vol. 18, no. 2, pp. 259–268, 2016.

[9] S. Sarkar, S. Chawla, S. Ahmad, J. Srivastava, H. Hammady, F. Fi-
lali, W. Znaidi, and J. Borge-Holthoefer, “Effective urban structure
inference from traffic flow dynamics,” IEEE Transactions on Big
Data, vol. 3, no. 2, pp. 181–193, 2017.

[10] R. Silva, S. M. Kang, and E. M. Airoldi, “Predicting traffic volumes
and estimating the effects of shocks in massive transportation
systems,” Proceedings of the National Academy of Sciences, vol. 112,
no. 18, pp. 5643–5648, 2015.

[11] Z. Huang, P. Wang, F. Zhang, J. Gao, and M. Schich, “A mobility
network approach to identify and anticipate large crowd gath-
erings,” Transportation research part B: methodological, vol. 114, pp.
147–170, 2018.

[12] S. A. Shah, D. Z. Seker, M. M. Rathore, S. Hameed, S. B. Yahia, and
D. Draheim, “Towards disaster resilient smart cities: Can internet
of things and big data analytics be the game changers?” IEEE
Access, vol. 7, pp. 91 885–91 903, 2019.

[13] B. Du, C. Liu, W. Zhou, Z. Hou, and H. Xiong, “Detecting
pickpocket suspects from large-scale public transit records,” IEEE
Transactions on Knowledge and Data Engineering, vol. 31, no. 3, pp.
465–478, 2018.

[14] Y. Xu, A. Belyi, I. Bojic, and C. Ratti, “Human mobility and so-
cioeconomic status: Analysis of singapore and boston,” Computers,
Environment and Urban Systems, vol. 72, pp. 51–67, 2018.

[15] E. Thuillier, L. Moalic, S. Lamrous, and A. Caminada, “Clustering
weekly patterns of human mobility through mobile phone data,”
IEEE Transactions on Mobile Computing, vol. 17, no. 4, pp. 817–830,
2017.

[16] J. Gao, Y.-C. Zhang, and T. Zhou, “Computational socioeconomic-
s,” Physics Reports, vol. 817, pp. 1–104, 2019.

[17] X. Liang, J. Zhao, L. Dong, and K. Xu, “Unraveling the origin of
exponential law in intra-urban human mobility,” Scientific reports,
vol. 3, p. 2983, 2013.

[18] Y. Liu, Z. Sui, C. Kang, and Y. Gao, “Uncovering patterns of
inter-urban trip and spatial interaction from social media check-in
data,” PloS one, vol. 9, no. 1, p. e86026, 2014.

[19] L. Pappalardo, F. Simini, S. Rinzivillo, D. Pedreschi, F. Giannotti,
and A.-L. Barabási, “Returners and explorers dichotomy in human
mobility,” Nature communications, vol. 6, no. 1, pp. 1–8, 2015.
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