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I. Control Theory Compared with Game Theory
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Figure 1: Norbert Wiener

i Control Theory

¥ N. Wiener, Cybernetics, or Control and Communication in
the Animal and the Machine, Hermann & Camb. Press,
Paris, 1948.

3/7



= Game Theory

Figure 2: John von Neumann

® J. von Neumann and O. Morgenstern, Theory of
Games and Economic Behavior, Princeton University
Press, Princeton, New Jersey, 1944.
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An Introduction to Game Theory

iz 1. (Normal Form) Non-cooperative Games

Definition 1.1

A normal non-cooperative game G = (N, S, ¢):
(i) Player: N = {1,2,--- ,n}.

(ii) Strategy:

Si:{1727"'7ki}a lzlana

Situation (Profile):S = [[_, S;.
(iii) Payoff function:

¢(s): S—=R, j=1,---,n (1)

Payoff:

c={c1, - ,cu}-
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= Nash Equilibrium

Definition 1.2
In a normal game G, a situation

s=(xj,---,x;) €S
is a Nash equilibrium if

* * * * *
Cj<x17...,7xj,...,xn)20j(xl7...7xj’... X
j=1---.n

6/71



Consider a game G with two players: P, and P»:
@ Strategies of P;: D, = {1,2};
@ Strategies of P,: D; = {1,2,3}.

Table 1: Payoff bi-matrix

P\P, | 1 2 3
1 2,113,2|6,1
2 1,62 3

3
2

Nash Equilibrium is (1, 2).
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i 2. Cooperative Game

Definition 1.4

A (transferable utility) game G consists of three ingredi-
ents:

(i) nplayers N :={py,--- ,p,} ={1,--- ,n};
(ii) subsets {S|S € 2"}, each S is called a coalition; S = ()
is empty coalition, S = N is complete coalition.
(iii) v: 2V — R is called the characteristic function; v(S) is
the worth of S, (which means the profit (cost: ¢ : 2V —
R) of coalition S).

v(D) = 0.
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Example 1.5 (Glove Game)
Consider a game G with P = {py,pa, -+ ,pn}:

R = {p; € P|p; has a right hand glove}
L = {p; € P|p; has a left hand glove}

Let S € 2F. A singe glove (0.01), a pair of gloves (1), then:

v(S) = min{|SNL|,|SNR|}+0.01 [n — 2min{|SNL|,|S N R|}]

4
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= |mputation

Definition 1.6

Given a cooperative game G = (N, v).
@ x € R" is called an imputation, if
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= 3. Evolutionary (Non-cooperative) Games

Assumptions:
(i) finitely or infinitely repeated:

G—-GY, or G—G™

(i) Dynamics of strategies:

Xn(t+ 1) :fn(x1<t)>"' axn(t)7"' ,x1(1)7---

where x; € Dy, and f; : [[_, D, = Dy, i=1,--- ,n.
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= 4. Networked Evolutionary Game

Definition 1.7

A networked evolutionary game, denoted by ((N, E), G, 1I),
consists of

(i) a network (graph) (N, E);
(ii) an FNG, G, such thatif (i,j) € E, theniand j play FNG
with strategies x;(¢) and x;(¢) respectively;
(iii) a local information based strategy updating rule.

v

® D. Cheng, F. He, H. Qi, T. Xu. Modeling, anal-
ysis and control of networked evolutionary games,
IEEE Trans. Aut. Contr., (Regular Paper), On line:
DOI:10.1109/TAC.2015.2404471.
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iz evolution — cooperation

@ Cooperation based on reciprocity can get started in an
asocial world.

@ Cooperation in organisms has been a difficulty for evo-
lutionary theory since Darwin.

[1] R. Axelrod, W.D. Hamilton, The Evolotion of Coopera-
tion, Science, New York, 1981.

[2] M.A. Nowak, Five rules for the evolution of cooperation,
Science, 314: 1560-1563, 2006.

[3] D.Okada, P.M. Bingham, Human uniqueness-self-
interest and social cooperation, J. Theor. Biol., Vol.
253, No. 2, 261-270, 2008.
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Control Compared with Game

= Common Point: the purpose of actions
An individual intends to “manipulate” the object.

i Different Point:
Object:

@ (for control) Machine (not intelligent);
@ (for game) Intelligent object (ability in anti-control).
Goal:

@ (for control) Optimization;
@ (for game) Nash Equilibrium.
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Example 1.8

Control:
Consider a linear system

X = Ax + Bu, (6)

the problem is to minimize J,

minJ := min / [x"Ox + u"Ru] dr. (7)
u u 0
The optimal control is:
u* = —R 'B"Px, (8)
where P > 0 satisfying Algebraic Riccati Equation:

PA+A"P=0Q - PBR'BTP=0. (9)
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Example 1.8(cont’d)

Game:
Consider a linear system

X:Ax—i—Blul +szl2, (10)

where u; is to minimize J;, i = 1,2,

minJ; := min/ (X" Qux+ u'Ru] dr, i=1,2. (11)
0

uj uj
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Example 1.8(cont’'d)
The Nash equilibrium is

{u’f — —R{'BTPyx, (12)

* —1pT
W, = —R;'BIP)x,

where P; > 0, i = 1,2, satisfying coupled Algebraic Riccati
Equations:

Pi(A — BoR,'BIP,) + (A — BoR, 'BIP,)"P,
+Q, — P\B\R;'BTP, = 0.

Py(A — B,R;'BTP,) + (A — B,R;'BTP,))"P,
+Q, — P,ByR; 'BYP, = 0.

(13)
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As for nonlinear case it becomes a problem of Differential
Games, and we have coupled Hamilton-Jacobi-Bellman
equation.

® J.C. Engwerda, Computational aspects of the open-
loop Nash equilibrium in linear quadratic games, J.
Econ. Dyn. Contr., Vol. 22, No. 8-9, 1487-1506, 1998.

® A. Friedman, Differential Games, American Math. So-
ciety, Rhode Island, 1974.

® N.Y. Lukoyanov, A Hamilton-Jacobitype equation in
control problems with hereditory information, J. Appl.
Math. Mech., Vol. 64, No. 2, 243-253, 2000.

¥ F.L. Lewis, et al, Optimal Control, John Wiley& Sons,
New Jersey, 2012.
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iz Cross Discipline between Control and Game

@ Control Theory = Game Theory:
Control-orient Games

@ Game Theory = Control Theory:
Game-based Controls
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Il. Control-oriented Games

Il.1. Learning Control in Games

iz Strategy in Rock-Paper-Scissors Game
MIT Best 50 of 2014 from Social Science: How to win in
Rock-Paper-Scissors?

® Z. Wang, B. Xu, H. Zhou, Social cycling and conditional
responses in the Rock-Paper-Scissors Game, Scien-
tific Reports 4, Vol. 5830, 2014.

i Convolutional Neural Network — Optimal Action

® V. Mnih, et al (19), Human-level control through deep
reinforcement learning, Nature, Vol. 518, 529-533,
2015.
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iz Different viewpoints to games

Consider: Rock-Paper-Scissors
@ Game Theory (God’s perspective):

The game properties: Zero-sum; Pure harmonic
game; Nash equilibrium: (1/3, 1/3, 1/3); ---

@ Control Theory (Player’s perspective):
How to win?

Successes depending on the whole knowledge about
all related aspects (&1 CLE11%, H HAGR)

y
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Example 2.1(cont’d)

Frequency = Strategy:
F: opponent’s strategy frequency:

F:(fr7ﬁaﬁ)):> fr_i_fs_i_fp(frvfﬂfp)

Assume: F(0) := (1, 1, 1). Then
{(ﬁ(r) + LA®L@), () =r
F(t+1)

(@)L + L.A(0), x() =s
(e (0):S5(0) fp(0) + 1), s(1) = p,

where x(7) is the opponent’s strategy at 7. Then

u(t+1) € BR(x(t)).
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Il. Control-oriented Games
1l.2. State-Space Approach

i Networked Evolutionary Game

Definition 1.7(recall)

A networked evolutionary game, denoted by ((N, E), G, 1I),
consists of

(i) a network (graph) (N, E);
(ii) an FNG, G, such thatif (i,j) € E, theniand j play FNG
with strategies x;(¢) and x;(¢) respectively;
(iii) a local information based strategy updating rule.
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iz Network Graph

Definition 2.2

Q@ (N,E) is called a graph, where N is the set of nodes
and E C N x N is the set of edges.

2]

U,(i) = {j|there is a path connecting i, j with leng < d}

Q If (i,j) € E implies (j,i) € E the graph is undirected,
otherwise, it is directed.

Definition 2.3

A network is homogeneous network, if each node has
same degree (for undirected graph)/ in-degree and out-
degree(for directed graph).
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iz Fundamental Network Game

Definition 2.4

(i) A normal game with two players is called a fundamen-
tal network game (FNG), if

S] :S2 o= S0:{1,2,--- ,k}

(i) An FNG is symmetric, if

61,2(x7 y) — C2,1(y,X), any S SO~

iz Qverall Payoff
a(t)= Y c(t), i€N. (14)
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. Strategy Updating Rule

Definition 2.5

A strategy updating rule (SUR) for an NEG, denoted by II,
is a set of mappings:

xi(t+1) =f ({x0),¢(0)|j e UG®}Y), >0, ieN. (15)

Remark 2.6

@ £ could be a probabilistic mapping;

© When the network is homogeneous, f;, i € N, are the
same.
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i Some SURs
Example 2.6

@ [I — I: Unconditional Imitation with fixed priority:

J* = argmax;c ;) ¢;(x(1)), (16)

xi(t+ 1) = xp(2). (17)
In non-unique case:
argmax;c ;) ¢;(x(1)) == {ji, - . jr}
set priority:
j* = min{pulu € argmax,cy (1)} (18)

= Deterministic k-valued dynamics.

v
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Example 2.6(cont’d)

@ II — II: Unconditional Imitation with equal probability
for best strategies.

. : 1
xi(t+1) =x; (1), with pL:;, w=1,---,r. (19)

= Probabilistic k-valued dynamics.

@ II — 11I: Simplified Fermi Rule. Randomly choose a
neighborhood j € U(i).

it 1) = {x,-@, (x(1)) > ci(x(1)) 20)

x;(t), Otherwise.

= Probabilistic k-valued dynamics.
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1= Fundamental Evolutionary Equation
Recall SUR (15):

xi(t+1) =f ({x0), @) e UG}), t>0, i€eN.

Since ¢;(t) depends on x(t), k € U(j), it follows that x;(r+1)
depends on x;(t), j € U,(i). That is, we can rewrite (15) as

xi(t+1) = fil{x(0)]j € U2()}), i€N. (21)

(i) Using the SUR, the f;, i € N can be determined. Then
(21) is called the FEE.

(i) For a homogeneous network all f; are the same.

29/71



ww Calculating FEE
Example 2.8

Consider Rock - Scissors - Cloth on R;. The payoff bi-
matrix is:

Table 2: Payoff Bi-matrix (Rock-Scissors-Cloth)

P\P,| R=1 ] §=2 | C=3
R=1] (0,0) | (1, =) | (=1, 1)
S=2[(=1, 1) [ (0,0) | (1, =1)
C=3|(1, =1)| (=1, 1) | (0, 0)

Assume the strategy updating rule is 11 — I:
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Example 2.9 (cont’d)

Table 3: Payoffs — Dynamics

Profile | 111 | 112 | 113 | 121 | 122 | 123
C 0 0 0 1 1 1
) 0 12 |-1/2] -1 | -1/2| 0
Cs 0 -1 1 1 0 -1
fi 1 1 1 1 1 1
b 1 1 3 1 1 1
f 1 1 3 1 2 2

Profile | 131 | 132 | 133 | 211 | 212 | 213
C, -1 -1 -1 -1 -1 -1
G 1/2 1 0 1 0 1/2
Cs 0 -1 1 -1 1 0
fi 1 1 1 3 3 &)
b 1 1 3 3 2 3
f 1 1 3 3 2 3
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Example 2.9 (cont’d)

™0 QY (s¢)
1

Al Q] [o\]
— —
(4p] Al (4p]
Al (qV]
No Q- | = =

o — |~ |— [— oM m|—
Al v ®| |77
Q@ Q2
= =], | | _, = =], | _,
IS 18]S SRR R kA SN ORSEEN AN
o o
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Example 2.9 (cont’d)

Profile | 331 | 332 | 333
C, | 00O
C, |12 [-1/2| 0
G, | 1| 1] 0
7 33 |3
2 3|2 | 3
f 3| 2| 3
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Example 2.9 (cont’d)
Identifying 1 ~ 63, 2 ~ 43, 3 ~ 43, we have the vector form
of each f; as

xi(t+ 1) = fi(x1(2),x2(2),x3(2)) = Mix (t)x2(t)x3(2), i=1,2,3
(22)

My = 65[111111333111222222333222333
My, = 65[113111323113122222333122323

My = 5[113122323113122323113122323].
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Example 2.9 (cont’d)

Assume the strategy updating rule is 11 — II:
Since player one and player 3 have no choice, f; and f; are
the same as in 1T is BNS. That is,

M, =M, M,=M;.

Consider player 2, who has two choices: either choose 1
or choose 3, and each choice has probability 0.5. Using
similar procedure, we can finally figure out 1> as:

4
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Example 2.9 (cont’d)

S — O
—laN—=1N O
—NO —=IN
— O O
— O O
S O
O —IN—=I
S O
—aN—= O
—aN—=1NO
— O O
—NO —I
— O O

— o O

- 1
S O —

O —la—=Ix
S O —~
S — O
S — O
—laN—=1NO
S O —
—aNO —Ia
—NO —I
O —~la—=Ix
S — O
O —la—=Ix

S — O

Now the evolution dynamics becomes a probabilistic 3-

valued logical network. (to be completed!)

v
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= Further Investigations

@ Convergence of NEG;
@ Strategically equivalence;
@ Evolutionarily stable strategy (ESS).

@ D.Cheng, F He, H. Qi, T. Xu, Modeling, analy-
sis, and control of networked evolutionary games,
IEEE Trans. Aut. Contr., (Regular Paper), On line:
DOI:10.1109/TAC.2015.2404471.

® D.Cheng, T. Xu, H. Qi, Evolutionarily stable strategy of
networked evolutionary games, IEEE TNNLS, Vol. 25,
No. 7, 1335-1345, 2014 (regular paper).

® D.Cheng, H. Qi, et al, Semi-tensor product approach
to networked evolutionary games, Contr. Theory Tech.,
Vol. 12, No. 2, 198-214, 2014.
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Il. Control-oriented Games

11.3. Man-Machine Games

Model (» machines vs m players)

(24)
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@ Pure Strategy
The optimal solution appears on a cycle. Find best
cycle.

[1] Y. Mu, L. Guo, Optimization and identification in
nonequilibrium dynamical games, Proc. 48th IEEE
CDC, 5750-5755, 2009.

[2] Y. Zhao, Z. Li, D. Cheng, Optimal control of logical
control notworks, IEEE Trans. Aut. Contr., Vol. 56,
No. 8, 1766-1776, 2011 (Regular Paper).

@ Mixed Strategy
N < oot Dynamic Programming (DP)
N = oo: DP + Receding horizon control

[1] D. Cheng, Y. Zhao, T. Xu, Receding horizon
based feedback optimization for mix-valued log-
ical networks, IEEE Trans. Aut. Contr., On line:
DOI:10.1109/TAC.2015.2419874.
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lll. Potential Games

Definition 3.1
Consider a finite game G = (N, S, C). G is a positive game
if there exists a function P : § — R, called the potential
function, such that for every i € N and for every s=' € S~
and Vx,y € §;

ci(x, 57 —¢i(y,s) = P(x,s7) — P(y,s™"), i=1,---,n.
(25)

v

@® D. Monderer, L.S. Shapley, Potential Games Games
and Economic Behavior, Vol. 14, 124-143, 1996.
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Fundamental Properties

If G is a potential game, then the potential function P is
unique up to a constant number. Precisely if P, and P, are
two potential functions, then P, — P, = ¢y € R.

Every finite potential game possesses a pure Nash equi-
librium. Sequential or cascading MBRA leads to a Nash
equilibrium.
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= Verify Potential Game

@ Shapley (96): O(k*);

@ Hofbauer (02): O(k*);

@ Hilo (11):  O(k%);

@ Cheng (14):  Potential Equation.
Hilo: “It is not easy, however, to verify whether a given
game is a potential game.”

¥ D. Monderer, L.S. Shapley, Potential games, Games
Econ. Theory, 97, 81-108, 1996.

® J. Hofbauer, G. Sorger, A differential game approach
to evolutionary equilibrium selection, Int. Game Theory
Rev. 4, 17-31, 2002.

¥ Y. Hino, An improved algorithm for detecting potential
games, Int. J. Game Theory, 40, 199-205, 2011.

® D. Cheng, On finite potential games, Automatica, Vol.
50, No. 7, 1793-1801, 2014 (regular paper).
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Lemma 3.4

G is a potential game if and only if there exist
di(x1, -+ , %, ,x,), Which is independent of x;,) such that

Ci(xl7'“ a-xn) :P()C1,"' a-xn)

+di(‘xl7“'7-§ci7"',xn), izl,"',n’ (26)
where P is the potential function.
Structure Vector Express:
C,‘(X], U 7xn) o= VL —1 X
di(xh...’fci’...’xn) = V Ix]?él-x]y i:17...7n7
P(XI’-.- 7xﬂ) = VP D(J 1
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Construct:

‘Pi = Iki—l®1k®lkn7i

EMankn—l, l: 1,"'

&= (VH eR, i=1,...

bi=Ve-V) eRF i=2 ...
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Potential Equation

Then (26) can be expressed as a linear system:

V¢ = b, (30)
where
-0, ¥, 0 0 & b,
- —TIJI 0 s 0 e & e bs
-v, 0 0 v, &n b,

(31)

(30) is called the potential equation and WV is called the
potential matrix.
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Main Result

Theorem 3.5

A finite game G is potential if and only if the potential equa-
tion has solution. Moreover, the potential P can be calcu-
lated by

Vp=Vi—ViMi=Vi—¢& (1} Q) . (32)

4

46 /71



Example 3.6

Consider a prisoner’s dilemma with the payoff bi-matrix as
in Table 4.

Table 4: Payoff Bi-matrix of Prisoner's Dilemma
Pi\P, 1 2
I [RR)|(ST)
2 | (1,8 | (P, P)
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Example 3.6 (cont’d)

From Table 4
Vi = (R,S, T, P)

VS = (R,T,S,P).

Assume V¢ = (a,b) and V§ = (c,d). It is easy to calculate
that

T
v, = (D}?’z]) = 5,[1,2,1,2],
ea\T _ T
U, — (D, ) = 5[1,1,2,2].

by = (Vi —v) =(0,T—8,5—T,0).
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Example 3.6 (cont’d)

Then the potential equation (30) becomes

1
1
0
0

—_—— O O

QLo & Q
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Example 3.6 (cont’d)
It is easy to solve it out as

a=c=T —c¢y
b:d:S—CO

where ¢, € R is an arbitrary number. We conclude that the
general Prisoner’s Dilemma is a potential game.
Using (32), the potential can be obtained as

Ve = Vi—ViD>? (34)
= (R—T,0,0,P—S) +co(1,1,1,1).

(Monderer, Shapley 1996) considered the Prisoner’s

Dilemma with R =1,S =9, T =0, P = 6, and Vp =
(4,3,3,0). It is a special case of (34) with ¢, = 3.

v
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IV. Game-based Controls

i Challenges for Systems and Control in the 21st Cen-
tury

Peter E. Caines at ICARCV, Dec. 2014, Singapore

S& C Challenge V: The development of a dynamic games
theory (GT) of the formation and stability of coalitions.

@ No tractable form yet in GT or economics.
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5 Game-based control in TAC

® G. Arslan, M.F. Demirkol, S. Yuksel, On games with
coupled constraineds, IEEE Trans. Aut. Contr., Vol. 60,
No. 2, 358-372, 2015.

@ A. Cortes, S. Martinez, Self-triggered best-response
dynamics for continuous games, IEEE Trans. Aut.
Contr., Vol. 60, No. 4, 1115-1120, 2015.

® T. Mylvaganam, M. Sassano, A. Astolfi, Constructive
e-Nash equilibria for nonzero-sum differatial games,
IEEE Trans. Aut. Contr., Vol. 60, No. 4, 950-965, 2015.

¥ A. Nedic, D. Bauso, Dynamic coalitional TU games.
distributed bargaining among players’ neighbors, IEEE
Trans. Aut. Contr., Vol. 58, No. 6, 1363-1376, 2013.
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i Engineering Game Theory
S.W. Mei, F. Liu, Y. Wei

@ Control of power systems via game theory;
@ Multi-objective optimization via game theory;

@ Robust optimization/control via game theory.

(Merge control theory into game theory?)
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Game-based Controls
4.1 Consensus of MAS

@ Network graph: (N,E(t)): N = {1,2,--- ,n} with vary-
ing topology: E(r).
@ Model of MAS:

@ Set of Strategies:

ae A CR, i=1,---,n.

¥ J.R. Marden, G. Arslan, J. S. Shamma, Cooperative
control and potential games, IEEE Trans. Sys., Man,
Cybernetcs, Part B, Vol. 39, No. 6, 1393-1407, 20009.
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Potential Game Structure

@ Potential Function:

Z Z Haj . alH. (36)

iEN JGU(

@ Payoff Functions:

Z ”aj alH l:17 , 1. (37)
JeU(i)
Remark 4.1.1

max P(a) = Consensus
acA
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Spatial Adaptive Player (SAP)

Taking a mixed strategy: The probability for a; € A; is:

exp{fBci(ai,a”'(t — 1))}
> exp{fBci(&,a=i(t 1))}

&i€A;

ri(t) =

(38)

@ Stationary distribution:

 exp{8P(a)}
) = S exp BPE)}

£€A

@ As 5 — oo, u mixed strategies maximize the potential
function.

@ With sulfficiently large 3, the players will asymptotically
reach a consensus with arbitrarily high probability.

56 /71



Restricted Spatial Adaptive Player
(RSAP) with Binary LLL Algorithm

@ Restricted Action Set:
Ri(a;(t — 1)) C A..
@ Choosing a; € Ri(a;(t — 1)):
Pria=a)=1/z,a; # a;i(t — 1)
Prla=ar—1)] = 1 — BGEDIEL

<i
where z; = max,.c,, [Ri(a;)|-
@ Mixed Strategy:
Priay(t) = &) = 2elfala (1))

D
Pr[a;(t) = a;(¢ — 1)] = 2dbala=1D}

where
D = exp{fec;(@;,a”'(t — 1))} + exp{Bei(a(t — 1))}.
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Main Result

Assumptions:
Q (Reversibility): For a!, a? € A;,

l
aj € Ri(a}) & a} € Ri(ay).

Q (Feasibility): For a?, a? € A, there exists a sequence
of actions @? — a! — --- — a¢ that satisfies a} €
Ri(asfl).

1

Theorem 4.1.2

Consider system (35). Assume 1 and 2, then BLLL in-
duces the unique stationary distribution (38).

As long as g is sufficiently large, a consensus will be reached
with arbitrarily high probability.
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4.2 Distributed Coverage of Graphs

Problem Statement

@ Unknown connected graph G = (V, E).
@ Mobile agents N = {1,2,--- ,n} (initially arbitrarily de-
ployed on G).
@ Agent g; can cover U'(z) := Uy (a;i(t)),i=1,--- ,n.
Purpose: max, | J._, U".

¥ AY. Yazicioglu, M. Egerstedt, J.S. Shamma, A game
theoretic approach to distributed coverage of graphs by
heterogeneous mobile agents, Est. Contr. Netw. Sys.,
Vol. 4, 309-315, 2013.

® M. Zhu, S. Martinez, Distributed coverage games for
energy-aware mobile sensor networks, SIAM J. Cont.
Opt., Vol. 51, No. 1, 1-27, 20183.
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Potential Game Formulation

@ Potential Function:

Pa)=> | JUl. (39)
i=1 [i=1
@ Payoff Functions:
ci(a) = U\ J U] (40)
J#i
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Description
Restricted Action Set:
Ri(a;(t — 1)) C V.

Assumptions: A1: Reversibility
A2: Feasibility
Region Condition:
@ Covering radius d;; (If £ € Uy (j), then ¢ is covered j.)
@ Communication radius d;, (If { € Ux(j), the Uy (£) is
known by j.)

d—di>d+1, j=1-n (41)

where
d* = max d,.
1<j<n
61/71



Main Result

Theorem 4.2.1

Assuming A1, A2, and (41) and using the BLLL algorithm
(with large enough (), the number of covered nodes is
asymptotically maximized (in probability).
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4.3 Congestion Games

An Example

Problem: Player 1 want to go from A to C, player 2 want to
go from B to D:

A B

3 2

C D
4

Figure 3: A Road Map

® D. Monderer, L.S. Shapley, Potential Games, Games &
Economic Behavior, Vol. 14, 124-143, 1996.
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Example 4.3.1

Consider Figure 3.
@ Player 1 his set of strategies is

Si={1-2, 34}
@ Player 2 his set of strategies is

S, ={1-3,2—-4}.

The cost for road j to be used by s cars is denoted by c;(s).

Table 5: Payoff Bi-matrix of Roads

Pi\P, 1-3

24

1-2 1/ +A0), 1(2) +A0) | £2) A1), £(2) +f1(1)

3—4 | £(2)+£(1), £2)+ (1) | f2(2) + (1), f2(2) + (1)
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Example 4.3.1(cont’d)

It is easy to verify that this is a potential game with

A +A2)+A(1) +£4(1), 1-2,1-3
P(s1,5,) = L) +£2)+A0) +f:(1), 1 =2,2 -4
L) +A2)+A0)+A(1),3—-4,1-3
H(D)+A2)+0)+£(1), 3—4,2—4,
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Congestion Model

Definition 4.3.2
A congestion model C (N, M, (X);en, (f;)jem) is defined as
follows.

@ Players: N = {1,2,--- n};

@ Facilities: M ={1,2,--- ,m};

@ Set of strategies: S; :== %; C 2¥;

@ Facility cost: f; : N — R (depends on number of users).

y

Let A; € X; be a strategy.

A:= ﬁAi €Y = ﬁEi.
i=1 i=1
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For each j € M Set
o) == #{i € N | j € A}.

Then we define
@ Payoff Functions:

A) =) f(oi(A)). (42)

JEA;

@ Potential Function:

PA):= (Z]; ) (43)

JEUL |A;
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Main Results

—

Theorem 4.3.4

Theorem 4.3.3
Every congestion game is a potential game.

Every finite potential game is isomorphic to a congestion
game.

An example to road pricing [1].

¥ X. Wang, N. Xiao, T. Wongpiromsarn, L. Xie, E. Fraz-
zoli, D. Rus, Distributed consensus in noncoopera-
tive congestion games: an application to road pric-
ing, Proc. 10th IEEE Int. Conf. Contr. Aut., Hangzhou,
China, 1668-1673, 2013.
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4.4 Some Other Related Topics

@ Scheduling-Allocation (in Power Systems)

@ T. Heikkinen, A potential game approach to distributed
power control and scheduling, Computer Networks, Vol
50, 2295-2311, 2006.

¥ R. Bhakar, V.S. Sriram, et al, Probabilistic game ap-
proaches for network cost allocation, IEEE Trans.
Power Sys., Vol. 25, No. 1, 51-58, 2010.

@ Cooperative Game — Control
¥ A. Nedic, D. Bauso, Dynamic coalitional TU gemes:

distributed bargaining among players’ neighbors, IEEE
TAC, Vol. 58, No. 6, 1363-1376, 2013.
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V. Conclusion

@ Game Theory and Control Theory are deeply inter-
connected.
© Control Theory — Game Theory:
e State Space approach;
@ Human-machine games;
@ Learning control in games.
© Game Theory — Control Theory (Potential):
Control of MASSs via designed potentials;
Distributed graph covering;
Congestion control;
Control of power systems, - - - etc.

A cross discipline between Control Theory and Game
Theory is emerging!
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Thank you for your attention!

Question?
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