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I. Control Theory Compared with Game Theory

+ Control Theory

Figure 1: Norbert Wiener

N. Wiener, Cybernetics, or Control and Communication in
the Animal and the Machine, Hermann & Camb. Press,
Paris, 1948.
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+ Game Theory

Figure 2: John von Neumann

J. von Neumann and O. Morgenstern, Theory of
Games and Economic Behavior, Princeton University
Press, Princeton, New Jersey, 1944.
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An Introduction to Game Theory
+ 1. (Normal Form) Non-cooperative Games

Definition 1.1
A normal non-cooperative game G = (N,S, c):
(i) Player: N = {1, 2, · · · , n}.

(ii) Strategy:

Si = {1, 2, · · · , ki}, i = 1, · · · n;

Situation (Profile):S =
∏n

i=1 Si.

(iii) Payoff function:

cj(s) : S → R, j = 1, · · · , n. (1)

Payoff:
c = {c1, · · · , cn} .
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+ Nash Equilibrium

Definition 1.2
In a normal game G, a situation

s = (x∗1, · · · , x∗n) ∈ S

is a Nash equilibrium if

cj(x∗1, · · · , , x∗j , · · · , x∗n) ≥ cj(x∗1, · · · , xj, · · · , x∗n)
j = 1, · · · , n. (2)
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Example 1.3
Consider a game G with two players: P1 and P2:

Strategies of P1: D2 = {1, 2};
Strategies of P2: D3 = {1, 2, 3}.

Table 1: Payoff bi-matrix

P1\P2 1 2 3
1 2, 1 3, 2 6, 1
2 1, 6 2, 3 5, 5

Nash Equilibrium is (1, 2).
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+ 2. Cooperative Game

Definition 1.4
A (transferable utility) game G consists of three ingredi-
ents:
(i) n players N := {p1, · · · , pn} = {1, · · · , n};

(ii) subsets {S|S ∈ 2N}, each S is called a coalition; S = ∅
is empty coalition, S = N is complete coalition.

(iii) v : 2N → R is called the characteristic function; v(S) is
the worth of S, (which means the profit (cost: c : 2N →
R) of coalition S).

v(∅) = 0.
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Example 1.5 (Glove Game)
Consider a game G with P = {p1, p2, · · · , pn}:

R = {pi ∈ P|pi has a right hand glove}

L = {pi ∈ P|pi has a left hand glove}

Let S ∈ 2P. A singe glove (0.01), a pair of gloves (1), then:

v(S) = min{|S∩L|, |S∩R|}+0.01 [n− 2 min{|S ∩ L|, |S ∩ R|}] .
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+ Imputation

Definition 1.6
Given a cooperative game G = (N, v).

x ∈ Rn is called an imputation, if

xi ≥ v({i}), i = 1, · · · , n, (3)

N∑
i=1

xi = v(N). (4)
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+ 3. Evolutionary (Non-cooperative) Games

Assumptions:
(i) finitely or infinitely repeated:

G→ GN , or G→ G∞

(ii) Dynamics of strategies:
x1(t + 1) = f1(x1(t), · · · , xn(t), · · · , x1(1), · · · , xn(1))

x2(t + 1) = f2(x1(t), · · · , xn(t), · · · , x1(1), · · · , xn(1))
...
xn(t + 1) = fn(x1(t), · · · , xn(t), · · · , x1(1), · · · , xn(1)),

(5)

where xi ∈ Dki, and fi :
∏n

j=1Dt
kj
→ Dki, i = 1, · · · , n.
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+ 4. Networked Evolutionary Game

Definition 1.7
A networked evolutionary game, denoted by ((N,E),G,Π),
consists of
(i) a network (graph) (N,E);

(ii) an FNG, G, such that if (i, j) ∈ E, then i and j play FNG
with strategies xi(t) and xj(t) respectively;

(iii) a local information based strategy updating rule.

D. Cheng, F. He, H. Qi, T. Xu. Modeling, anal-
ysis and control of networked evolutionary games,
IEEE Trans. Aut. Contr., (Regular Paper), On line:
DOI:10.1109/TAC.2015.2404471.
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+ evolution→ cooperation
Cooperation based on reciprocity can get started in an
asocial world.
Cooperation in organisms has been a difficulty for evo-
lutionary theory since Darwin.

[1] R. Axelrod, W.D. Hamilton, The Evolotion of Coopera-
tion, Science, New York, 1981.

[2] M.A. Nowak, Five rules for the evolution of cooperation,
Science, 314: 1560-1563, 2006.

[3] D.Okada, P.M. Bingham, Human uniqueness-self-
interest and social cooperation, J. Theor. Biol., Vol.
253, No. 2, 261-270, 2008.
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Control Compared with Game

+ Common Point: the purpose of actions
An individual intends to “manipulate” the object.

+ Different Point:
Object:

(for control) Machine (not intelligent);
(for game) Intelligent object (ability in anti-control).

Goal:

(for control) Optimization;
(for game) Nash Equilibrium.
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Example 1.8
Control:
Consider a linear system

ẋ = Ax + Bu, (6)

the problem is to minimize J,

min
u

J := min
u

∫ ∞
0

[
xTQx + uTRu

]
dt. (7)

The optimal control is:

u∗ = −R−1BTPx, (8)

where P ≥ 0 satisfying Algebraic Riccati Equation:

PA + ATP = Q− PBR−1BTP = 0. (9)
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Example 1.8(cont’d)
Game:
Consider a linear system

ẋ = Ax + B1u1 + B2u2, (10)

where ui is to minimize Ji, i = 1, 2,

min
ui

Ji := min
ui

∫ ∞
0

[
xTQix + uTRiu

]
dt, i = 1, 2. (11)
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Example 1.8(cont’d)
The Nash equilibrium is{

u∗1 = −R−1
1 BT

1 P1x,
u∗2 = −R−1

2 BT
2 P2x,

(12)

where Pi > 0, i = 1, 2, satisfying coupled Algebraic Riccati
Equations:

P1(A− B2R−1
2 BT

2 P2) + (A− B2R−1
2 BT

2 P2)
TP1

+Q1 − P1B1R−1
1 BT

1 P1 = 0.
P2(A− B1R−1

1 BT
1 P1) + (A− B1R−1

1 BT
1 P1)

TP2

+Q2 − P2B2R−1
2 BT

2 P2 = 0.

(13)

17 / 71



As for nonlinear case it becomes a problem of Differential
Games, and we have coupled Hamilton-Jacobi-Bellman
equation.

J.C. Engwerda, Computational aspects of the open-
loop Nash equilibrium in linear quadratic games, J.
Econ. Dyn. Contr., Vol. 22, No. 8-9, 1487-1506, 1998.

A. Friedman, Differential Games, American Math. So-
ciety, Rhode Island, 1974.

N.Y. Lukoyanov, A Hamilton-Jacobitype equation in
control problems with hereditory information, J. Appl.
Math. Mech., Vol. 64, No. 2, 243-253, 2000.

F.L. Lewis, et al, Optimal Control, John Wiley& Sons,
New Jersey, 2012.
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+ Cross Discipline between Control and Game

Control Theory⇒ Game Theory:
Control-orient Games

Game Theory⇒ Control Theory:
Game-based Controls
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II. Control-oriented Games
II.1. Learning Control in Games

+ Strategy in Rock-Paper-Scissors Game
MIT Best 50 of 2014 from Social Science: How to win in
Rock-Paper-Scissors?

Z. Wang, B. Xu, H. Zhou, Social cycling and conditional
responses in the Rock-Paper-Scissors Game, Scien-
tific Reports 4, Vol. 5830, 2014.

+ Convolutional Neural Network→ Optimal Action

V. Mnih, et al (19), Human-level control through deep
reinforcement learning, Nature, Vol. 518, 529-533,
2015.
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+ Different viewpoints to games
Example 2.1
Consider: Rock-Paper-Scissors

Game Theory (God’s perspective):

The game properties: Zero-sum; Pure harmonic
game; Nash equilibrium: (1/3, 1/3, 1/3); · · ·
Control Theory (Player’s perspective):

How to win?

Successes depending on the whole knowledge about
all related aspects (�C�*,zÔØ�)
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Example 2.1(cont’d)
Frequency⇒ Strategy:
F: opponent’s strategy frequency:

F = (fr, fs, fp)⇒ x =
1

fr + fs + fp
(fr, fs, fp)

Assume: F(0) := (1, 1, 1). Then

F(t + 1) =


(fr(t) + 1, fs(t), fp(t)), x(t) = r
(fr(t), fs(t) + 1, fp(t)), x(t) = s
(fr(t), fs(t), fp(t) + 1), s(t) = p,

where x(t) is the opponent’s strategy at t. Then

u(t + 1) ∈ BR(x(t)).
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II. Control-oriented Games
II.2. State-Space Approach

+ Networked Evolutionary Game

Definition 1.7(recall)
A networked evolutionary game, denoted by ((N,E),G,Π),
consists of
(i) a network (graph) (N,E);

(ii) an FNG, G, such that if (i, j) ∈ E, then i and j play FNG
with strategies xi(t) and xj(t) respectively;

(iii) a local information based strategy updating rule.
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+ Network Graph

Definition 2.2
1 (N,E) is called a graph, where N is the set of nodes

and E ⊂ N × N is the set of edges.
2

Ud(i) = {j|there is a path connecting i, j with leng ≤ d}

3 If (i, j) ∈ E implies (j, i) ∈ E the graph is undirected,
otherwise, it is directed.

Definition 2.3
A network is homogeneous network, if each node has
same degree (for undirected graph)/ in-degree and out-
degree(for directed graph).
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+ Fundamental Network Game

Definition 2.4
(i) A normal game with two players is called a fundamen-

tal network game (FNG), if

S1 = S2 := S0 = {1, 2, · · · , k}.

(ii) An FNG is symmetric, if

c1,2(x, y) = c2,1(y, x), ∀x, y ∈ S0.

+ Overall Payoff

ci(t) =
∑

j∈U(i)\i

cij(t), i ∈ N. (14)

25 / 71



+ Strategy Updating Rule

Definition 2.5
A strategy updating rule (SUR) for an NEG, denoted by Π,
is a set of mappings:

xi(t + 1) = fi
(
{xj(t), cj(t)

∣∣j ∈ U(i)}
)
, t ≥ 0, i ∈ N. (15)

Remark 2.6
1 fi could be a probabilistic mapping;
2 When the network is homogeneous, fi, i ∈ N, are the

same.
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+ Some SURs
Example 2.6

Π− I: Unconditional Imitation with fixed priority:

j∗ = argmaxj∈U(i) cj(x(t)), (16)

⇒

xi(t + 1) = xj∗(t). (17)

In non-unique case:

argmaxj∈U(i) cj(x(t)) := {j∗1, · · · , j∗r},

set priority:

j∗ = min{µ|µ ∈ argmaxj∈U(i) cj(x(t))}. (18)

⇒ Deterministic k-valued dynamics.
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Example 2.6(cont’d)
Π − II: Unconditional Imitation with equal probability
for best strategies.

xi(t + 1) = xj∗µ(t), with pi
µ =

1
r
, µ = 1, · · · , r. (19)

⇒ Probabilistic k-valued dynamics.
Π − III: Simplified Fermi Rule. Randomly choose a
neighborhood j ∈ U(i).

xi(t + 1) =

{
xj(t), cj(x(t)) > ci(x(t))
xi(t), Otherwise.

(20)

⇒ Probabilistic k-valued dynamics.
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+ Fundamental Evolutionary Equation
Recall SUR (15):

xi(t + 1) = fi
(
{xj(t), cj(t)

∣∣j ∈ U(i)}
)
, t ≥ 0, i ∈ N.

Since cj(t) depends on xk(t), k ∈ U(j), it follows that xi(t+1)
depends on xj(t), j ∈ U2(i). That is, we can rewrite (15) as

xi(t + 1) = fi({xj(t)
∣∣j ∈ U2(i)}), i ∈ N. (21)

Remark 2.7
(i) Using the SUR, the fi, i ∈ N can be determined. Then

(21) is called the FEE.
(ii) For a homogeneous network all fi are the same.
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+ Calculating FEE
Example 2.8
Consider Rock - Scissors - Cloth on R3. The payoff bi-
matrix is:

Table 2: Payoff Bi-matrix (Rock-Scissors-Cloth)

P1\P2 R = 1 S = 2 C = 3
R = 1 (0, 0) (1, −1) (−1, 1)
S = 2 (−1, 1) (0, 0) (1, −1)
C = 3 (1, −1) (−1, 1) (0, 0)

Assume the strategy updating rule is Π− I:
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Example 2.9 (cont’d)

Table 3: Payoffs→ Dynamics

Profile 111 112 113 121 122 123
C1 0 0 0 1 1 1
C2 0 1/2 -1/2 -1 -1/2 0
C3 0 -1 1 1 0 -1
f1 1 1 1 1 1 1
f2 1 1 3 1 1 1
f3 1 1 3 1 2 2

Profile 131 132 133 211 212 213
C1 -1 -1 -1 -1 -1 -1
C2 1/2 1 0 1 0 1/2
C3 0 -1 1 -1 1 0
f1 1 1 1 3 3 3
f2 1 1 3 3 2 3
f3 1 1 3 3 2 3
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Example 2.9 (cont’d)

Profile 221 222 223 231 232 233
C1 0 0 0 1 1 1
C2 -1/2 0 1/2 0 -1 -1/2
C3 1 0 -1 -1 1 0
f1 2 2 2 2 2 2
f2 1 2 2 2 2 2
f3 1 2 2 3 2 3

Profile 311 312 313 321 322 323
C1 1 1 1 -1 -1 -1
C2 -1/2 0 -1 0 1/2 1
C3 0 -1 1 1 0 -1
f1 3 3 3 2 2 2
f2 3 3 3 1 2 2
f3 1 1 3 1 2 2
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Example 2.9 (cont’d)

Profile 331 332 333
C1 0 0 0
C2 1/2 -1/2 0
C3 -1 1 0
f1 3 3 3
f2 3 2 3
f3 3 2 3
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Example 2.9 (cont’d)
Identifying 1 ∼ δ1

3, 2 ∼ δ2
3, 3 ∼ δ3

3, we have the vector form
of each fi as

xi(t + 1) = fi(x1(t), x2(t), x3(t)) = Mix1(t)x2(t)x3(t), i = 1, 2, 3,
(22)

where

M1 = δ3[1 1 1 1 1 1 3 3 3 1 1 1 2 2 2 2 2 2 3 3 3 2 2 2 3 3 3];
M2 = δ3[1 1 3 1 1 1 3 2 3 1 1 3 1 2 2 2 2 2 3 3 3 1 2 2 3 2 3];
M3 = δ3[1 1 3 1 2 2 3 2 3 1 1 3 1 2 2 3 2 3 1 1 3 1 2 2 3 2 3].
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Example 2.9 (cont’d)
Assume the strategy updating rule is Π− II:
Since player one and player 3 have no choice, f1 and f3 are
the same as in Π is BNS. That is,

M′1 = M1, M′3 = M3.

Consider player 2, who has two choices: either choose 1
or choose 3, and each choice has probability 0.5. Using
similar procedure, we can finally figure out f2 as:
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Example 2.9 (cont’d)

M′2 =

 1 1 1
2 1 1

2
1
2 0 0 0 1 1 1

2
1
2 0

0 0 0 0 1
2

1
2 0 1

2 0 0 0 0 1
2 1

0 0 1
2 0 0 0 1 1

2 1 0 0 1
2 0 0

0 0 0 0 1
2

1
2 0 1

2 0 0 0 0 0
1 1

2 1 1
2 0 0 0 1

2 1 1 0 1
2 0

0 1
2 0 1

2
1
2

1
2 1 0 0 0 1 1

2 1


Now the evolution dynamics becomes a probabilistic 3-
valued logical network. (to be completed!)
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+ Further Investigations

Convergence of NEG;
Strategically equivalence;
Evolutionarily stable strategy (ESS).

D.Cheng, F. He, H. Qi, T. Xu, Modeling, analy-
sis, and control of networked evolutionary games,
IEEE Trans. Aut. Contr., (Regular Paper), On line:
DOI:10.1109/TAC.2015.2404471.

D.Cheng, T. Xu, H. Qi, Evolutionarily stable strategy of
networked evolutionary games, IEEE TNNLS, Vol. 25,
No. 7, 1335-1345, 2014 (regular paper).

D.Cheng, H. Qi, et al, Semi-tensor product approach
to networked evolutionary games, Contr. Theory Tech.,
Vol. 12, No. 2, 198-214, 2014.
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II. Control-oriented Games
II.3. Man-Machine Games

Model (n machines vs m players)
m1(t + 1) = f1(m1(t), · · · ,mn(t), h1(t), · · · , hm(t))
m2(t + 1) = f2(m1(t), · · · ,mn(t), h1(t), · · · , hm(t))
...
mn(t + 1) = fn(m1(t), · · · ,mn(t), h1(t), · · · , hm(t)).

(23)

Goal:

max
h(t)∈Dp

N∑
t=1

λtch(t), 0 < λ < 1. (24)
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Pure Strategy
The optimal solution appears on a cycle. Find best
cycle.

[1] Y. Mu, L. Guo, Optimization and identification in
nonequilibrium dynamical games, Proc. 48th IEEE
CDC, 5750-5755, 2009.

[2] Y. Zhao, Z. Li, D. Cheng, Optimal control of logical
control notworks, IEEE Trans. Aut. Contr., Vol. 56,
No. 8, 1766-1776, 2011 (Regular Paper).

Mixed Strategy
N <∞: Dynamic Programming (DP)
N =∞: DP + Receding horizon control

[1] D. Cheng, Y. Zhao, T. Xu, Receding horizon
based feedback optimization for mix-valued log-
ical networks, IEEE Trans. Aut. Contr., On line:
DOI:10.1109/TAC.2015.2419874.
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III. Potential Games

Definition 3.1
Consider a finite game G = (N, S,C). G is a positive game
if there exists a function P : S → R, called the potential
function, such that for every i ∈ N and for every s−i ∈ S−i

and ∀x, y ∈ Si

ci(x, s−i)− ci(y, s−i) = P(x, s−i)− P(y, s−i), i = 1, · · · , n.
(25)

D. Monderer, L.S. Shapley, Potential Games Games
and Economic Behavior, Vol. 14, 124-143, 1996.
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Fundamental Properties

Theorem 3.2
If G is a potential game, then the potential function P is
unique up to a constant number. Precisely if P1 and P2 are
two potential functions, then P1 − P2 = c0 ∈ R.

Theorem 3.3
Every finite potential game possesses a pure Nash equi-
librium. Sequential or cascading MBRA leads to a Nash
equilibrium.
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+ Verify Potential Game
Shapley (96): O(k4);
Hofbauer (02): O(k3);
Hilo (11): O(k2);
Cheng (14): Potential Equation.

Hilo: “It is not easy, however, to verify whether a given
game is a potential game.”

D. Monderer, L.S. Shapley, Potential games, Games
Econ. Theory, 97, 81-108, 1996.

J. Hofbauer, G. Sorger, A differential game approach
to evolutionary equilibrium selection, Int. Game Theory
Rev. 4, 17-31, 2002.

Y. Hino, An improved algorithm for detecting potential
games, Int. J. Game Theory, 40, 199-205, 2011.

D. Cheng, On finite potential games, Automatica, Vol.
50, No. 7, 1793-1801, 2014 (regular paper).
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Lemma 3.4
G is a potential game if and only if there exist
di(x1, · · · , x̂i, · · · , xn), which is independent of xi,) such that

ci(x1, · · · , xn) = P(x1, · · · , xn)
+di(x1, · · · , x̂i, · · · , xn), i = 1, · · · , n, (26)

where P is the potential function.

Structure Vector Express:

ci(x1, · · · , xn) := Vc
i nn

j=1 xj

di(x1, · · · , x̂i, · · · , xn) := Vd
i nj6=i xj, i = 1, · · · , n,

P(x1, · · · , xn) := VP nn
j=1 xj.
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Construct:

Ψi = Iki−1 ⊗ 1k ⊗ Ikn−i

∈Mkn×kn−1 , i = 1, · · · , n. (27)

ξi :=
(
Vd

i

)T ∈ Rkn−1
, i = 1, · · · , n. (28)

bi := (Vc
i − Vc

1)T ∈ Rkn
, i = 2, · · · , n. (29)
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Potential Equation

Then (26) can be expressed as a linear system:

Ψξ = b, (30)

where

Ψ =


−Ψ1 Ψ2 0 · · · 0
−Ψ1 0 Ψ3 · · · 0

... . . .
−Ψ1 0 0 · · · Ψn

 ; ξ =


ξ1

ξ2
...
ξn

 ; b =


b2

b3
...

bn

 .
(31)

(30) is called the potential equation and Ψ is called the
potential matrix.
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Main Result

Theorem 3.5
A finite game G is potential if and only if the potential equa-
tion has solution. Moreover, the potential P can be calcu-
lated by

VP = Vc
1 − Vd

1 M1 = Vc
1 − ξT

1

(
1T

k ⊗ Ik
)
. (32)
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Example 3.6
Consider a prisoner’s dilemma with the payoff bi-matrix as
in Table 4.

Table 4: Payoff Bi-matrix of Prisoner’s Dilemma

P1\P2 1 2
1 (R, R) (S, T)
2 (T, S) (P, P)
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Example 3.6 (cont’d)
From Table 4

Vc
1 = (R, S,T,P)

Vc
2 = (R,T, S,P).

Assume Vd
1 = (a, b) and Vd

2 = (c, d). It is easy to calculate
that

Ψ1 =
(

D[2,2]
f

)T
= δ2[1, 2, 1, 2]T ,

Ψ2 =
(

D[2,2]
r

)T
= δ2[1, 1, 2, 2]T .

b2 = (Vc
2 − Vc

1)T = (0,T − S, S− T, 0)T .
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Example 3.6 (cont’d)
Then the potential equation (30) becomes

−1 0 1 0
0 −1 1 0
−1 0 0 1
0 −1 0 1




a
b
c
d

 =


0

T − S
S− T

0

 . (33)

49 / 71



Example 3.6 (cont’d)
It is easy to solve it out as{

a = c = T − c0

b = d = S− c0

where c0 ∈ R is an arbitrary number. We conclude that the
general Prisoner’s Dilemma is a potential game.
Using (32), the potential can be obtained as

VP = Vc
1 − Vd

1 D[2,2]
f

= (R− T, 0, 0,P− S) + c0(1, 1, 1, 1).
(34)

(Monderer, Shapley 1996) considered the Prisoner’s
Dilemma with R = 1, S = 9, T = 0, P = 6, and VP =
(4, 3, 3, 0). It is a special case of (34) with c0 = 3.
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IV. Game-based Controls

+ Challenges for Systems and Control in the 21st Cen-
tury

Peter E. Caines at ICARCV, Dec. 2014, Singapore

S& C Challenge V: The development of a dynamic games
theory (GT) of the formation and stability of coalitions.

No tractable form yet in GT or economics.
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+ Game-based control in TAC

G. Arslan, M.F. Demirkol, S. Yuksel, On games with
coupled constraineds, IEEE Trans. Aut. Contr., Vol. 60,
No. 2, 358-372, 2015.

A. Cortes, S. Martinez, Self-triggered best-response
dynamics for continuous games, IEEE Trans. Aut.
Contr., Vol. 60, No. 4, 1115-1120, 2015.

T. Mylvaganam, M. Sassano, A. Astolfi, Constructive
e-Nash equilibria for nonzero-sum differatial games,
IEEE Trans. Aut. Contr., Vol. 60, No. 4, 950-965, 2015.

A. Nedic, D. Bauso, Dynamic coalitional TU games.
distributed bargaining among players’ neighbors, IEEE
Trans. Aut. Contr., Vol. 58, No. 6, 1363-1376, 2013.
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+ Engineering Game Theory

S.W. Mei, F. Liu, Y. Wei

Control of power systems via game theory;
Multi-objective optimization via game theory;
Robust optimization/control via game theory.

(Merge control theory into game theory?)
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Game-based Controls
4.1 Consensus of MAS

Network graph: (N,E(t)): N = {1, 2, · · · , n} with vary-
ing topology: E(t).
Model of MAS:

ai(t + 1) = fi (aj(t)|j ∈ U(i)) , i = 1, · · · , n. (35)

Set of Strategies:

ai ∈ Ai ⊂ Rn, i = 1, · · · , n.

J.R. Marden, G. Arslan, J. S. Shamma, Cooperative
control and potential games, IEEE Trans. Sys., Man,
Cybernetcs, Part B, Vol. 39, No. 6, 1393-1407, 2009.
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Potential Game Structure

Potential Function:

P(a) = −
∑
i∈N

∑
j∈U(i)

‖aj − ai‖
2

. (36)

Payoff Functions:

ci(a) = −
∑

j∈U(i)

‖aj − ai‖, i = 1, · · · , n. (37)

Remark 4.1.1

max
a∈A

P(a)⇒ Consensus
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Spatial Adaptive Player (SAP)
Taking a mixed strategy: The probability for ai ∈ Ai is:

rai(t) =
exp{βci(ai, a−i(t − 1))}∑

ξi∈Ai

exp{βci(ξi, a−i(t − 1))}
. (38)

Stationary distribution:

µ(a) =
exp{βP(a)}∑

ξ∈A
exp{βP(ξ)}

.

As β → ∞, µ mixed strategies maximize the potential
function.
With sufficiently large β, the players will asymptotically
reach a consensus with arbitrarily high probability.
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Restricted Spatial Adaptive Player
(RSAP) with Binary LLL Algorithm

Restricted Action Set:

Ri(ai(t − 1)) ⊂ Ai.

Choosing âi ∈ Ri(ai(t − 1)):

Pr [â = ai] = 1/zi, ai 6= ai(t − 1)

Pr [â = ai(t − 1)] = 1− |Ri(ai(t−1))|−1
zi

,

where zi = maxai∈Ai |Ri(ai)|.
Mixed Strategy:

Pr [ai(t) = âi] = exp{βci(âi,a−i(t−1))}
D

Pr [ai(t) = ai(t − 1)] = exp{βci(a(t−1))}
D ,

where

D = exp{βci(âi, a−i(t − 1))}+ exp{βci(a(t − 1))}.
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Main Result
Assumptions:

1 (Reversibility): For a1
i , a2

i ∈ Ai,

a1
i ∈ Ri(a2

i )⇔ a1
i ∈ Ri(a2

i ).

2 (Feasibility): For ao
i , ad

i ∈ Ai, there exists a sequence
of actions ao

i → a1
i → · · · → ad

i that satisfies as
i ∈

Ri(as−1
i ).

Theorem 4.1.2
Consider system (35). Assume 1 and 2, then BLLL in-
duces the unique stationary distribution (38).

As long as β is sufficiently large, a consensus will be reached
with arbitrarily high probability.
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4.2 Distributed Coverage of Graphs
Problem Statement

Unknown connected graph G = (V,E).
Mobile agents N = {1, 2, · · · , n} (initially arbitrarily de-
ployed on G).
Agent ai can cover Ui(t) := Udi(ai(t)), i = 1, · · · , n.

Purpose: maxa
⋃n

i=1 Ui.

A.Y. Yazicioglu, M. Egerstedt, J.S. Shamma, A game
theoretic approach to distributed coverage of graphs by
heterogeneous mobile agents, Est. Contr. Netw. Sys.,
Vol. 4, 309-315, 2013.

M. Zhu, S. Martinez, Distributed coverage games for
energy-aware mobile sensor networks, SIAM J. Cont.
Opt., Vol. 51, No. 1, 1-27, 2013.
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Potential Game Formulation

Potential Function:

P(a) =
n∑

i=1

∣∣∣∣∣
n⋃

i=1

Ui

∣∣∣∣∣ . (39)

Payoff Functions:

ci(a) =

∣∣∣∣∣∣Ui\
⋃
j 6=i

Uj

∣∣∣∣∣∣ . (40)
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Description
Restricted Action Set:

Ri(ai(t − 1)) ⊂ V.

Assumptions: A1: Reversibility
A2: Feasibility
Region Condition:

Covering radius dj; (If ξ ∈ Udj(j), then ξ is covered j.)
Communication radius dc

j , (If ξ ∈ Udc
j
(j), the Udξ(ξ) is

known by j.)

dc
j − dj ≥ d∗ + 1, j = 1, · · · , n, (41)

where
d∗ = max

1≤j≤n
dj.
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Main Result

Theorem 4.2.1
Assuming A1, A2, and (41) and using the BLLL algorithm
(with large enough β), the number of covered nodes is
asymptotically maximized (in probability).
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4.3 Congestion Games
An Example

Problem: Player 1 want to go from A to C, player 2 want to
go from B to D:

A

C D

B
1

3 2

4

Figure 3: A Road Map

D. Monderer, L.S. Shapley, Potential Games, Games &
Economic Behavior, Vol. 14, 124-143, 1996.
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Example 4.3.1
Consider Figure 3.

Player 1 his set of strategies is

S1 = {1− 2, 3− 4};

Player 2 his set of strategies is

S2 = {1− 3, 2− 4}.

The cost for road j to be used by s cars is denoted by cj(s).

Table 5: Payoff Bi-matrix of Roads

P1\P2 1− 3 2− 4
1− 2 f1(2) + f2(1), f1(2) + f3(1) f2(2) + f1(1), f2(2) + f4(1)
3− 4 f3(2) + f4(1), f3(2) + f1(1) f4(2) + f3(1), f4(2) + f2(1)
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Example 4.3.1(cont’d)
It is easy to verify that this is a potential game with

P(s1, s2) =


f1(1) + f1(2) + f2(1) + f3(1), 1− 2, 1− 3
f2(1) + f2(2) + f1(1) + f4(1), 1− 2, 2− 4
f3(1) + f3(2) + f4(1) + f1(1), 3− 4, 1− 3
f4(1) + f4(2) + f3(1) + f2(1), 3− 4, 2− 4.
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Congestion Model

Definition 4.3.2
A congestion model C (N,M, (Σi)i∈N , (fj)j∈M) is defined as
follows.

Players: N = {1, 2, · · · , n};
Facilities: M = {1, 2, · · · ,m};
Set of strategies: Si := Σi ⊂ 2M;
Facility cost: fj : N → R (depends on number of users).

Let Ai ∈ Σi be a strategy.

A :=
n∏

i=1

Ai ∈ Σ :=
n∏

i=1

Σi.
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For each j ∈ M Set

σj(A) := #{i ∈ N | j ∈ Ai}.

Then we define
Payoff Functions:

ci(A) :=
∑
j∈Ai

fj (σj(A)) . (42)

Potential Function:

P(A) :=
∑

j∈∪n
i=1Ai

σj(A)∑
`=1

fj(`)

 . (43)
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Main Results

Theorem 4.3.3
Every congestion game is a potential game.

Theorem 4.3.4
Every finite potential game is isomorphic to a congestion
game.

An example to road pricing [1].

X. Wang, N. Xiao, T. Wongpiromsarn, L. Xie, E. Fraz-
zoli, D. Rus, Distributed consensus in noncoopera-
tive congestion games: an application to road pric-
ing, Proc. 10th IEEE Int. Conf. Contr. Aut., Hangzhou,
China, 1668-1673, 2013.
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4.4 Some Other Related Topics

Scheduling-Allocation (in Power Systems)

T. Heikkinen, A potential game approach to distributed
power control and scheduling, Computer Networks, Vol
50, 2295-2311, 2006.

R. Bhakar, V.S. Sriram, et al, Probabilistic game ap-
proaches for network cost allocation, IEEE Trans.
Power Sys., Vol. 25, No. 1, 51-58, 2010.

Cooperative Game→ Control

A. Nedic, D. Bauso, Dynamic coalitional TU gemes:
distributed bargaining among players’ neighbors, IEEE
TAC, Vol. 58, No. 6, 1363-1376, 2013.
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V. Conclusion

1 Game Theory and Control Theory are deeply inter-
connected.

2 Control Theory→ Game Theory:
State Space approach;
Human-machine games;
Learning control in games.

3 Game Theory→ Control Theory (Potential):
Control of MASs via designed potentials;
Distributed graph covering;
Congestion control;
Control of power systems, · · · etc.

A cross discipline between Control Theory and Game
Theory is emerging!
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Thank you for your attention!

Question?
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