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l. Semi-tensor Product of Matrices

i Tensor (Kronecker) Product
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= An Example
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= Semi- tensor Product of Matrices
A,xn X B

pXq —

Definition 1.2
LetA € M,,., and B € M,,,. Denote

t :=lem(n, p).

Then we define the semi-tensor product (STP) of A and B
as

AxB:=(A®1L) (B®1Ly) € Mumx(a/p)- (1))
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= Some Basic Comments
@ Whenn =p,Ax B=AB. Sothe STP is a
generalization of conventional matrix product.
@ When n = rp, denote it by A >, B;
when rn = p, denote it by A <, B.
These two cases are called the multi-dimensional
case, which is particularly important in applications.

@ STP keeps almost all the major properties of the
conventional matrix product unchanged.
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= Examples

T.Letx=1[1 2 3 —1] andY:H.Then
XxY=[1 2]-1+[3 —1]-2=[7 0].

2. Letx =[-1 21 -1 2 3]"andy = [1 2 -2].
Then

cor- [ e[ o[
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Example 1.3 (Continued)

3. Let )
1211
A:2312,B:B:ﬂ
3210
Then
[1211}é [1211]:%
AxB = [2312}5 [2312]j
[3210}; [3210]:?
3 4 -3 -5
= |47 -5 -8
5 2 -7 —4
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= |nsight Meaning
LetA € M,,.,. Consider a bilinear form

P(x,y) = xT Ay.

Row Stacking Form:

Vr(A) = (6111,012, R TP MO

Column Stacking Form

VC(A> = (a117a217 .o ’amh .o ’alr“ . o

Then (using Row Stacking Form:)
P(x,y) = V,(A) x x x y.

x can search pointer mechanically!

7amn)-

7amn)-

9/64



i Multi-linear Mapping
P:R" xR" xR — R.

Cubic Matrix?
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P(8,,, &, 05) := dijk,

n’ s
l:l’-.-7m;]:1’...7n;k:17...’s‘

Define
Mp = [di11,+ ,dits, s dynts s s
Then
P(x,y,2) = Mp X X X y X Z. (4)

It is available for general multi-linear mappings.
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iz A Syntheses

STP © Apxn X Bpxy
n=p — AB = A x B (Conventional)

A;:=Col;(A) - A®B=IA xB,---,A, x B] (Kronecker)
n=gq — AxB=A X By, - ,A, x B,] (Khatri-Lao)

@ a syntheses of multi-products;
@ with multi-functions of several products.
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= Properties

Proposition 1.4
@ (Distributive rule)

A X (aB+ C) = aA X B+ A x C; (5)
(aB+ C)x A=aBxA+CxA, «f€R.

@ (Associative rule)

Ax (BxC)=(AxB)xC. (6)
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Proposition 1.5

(Ax B)" =B" x A”. (7)
@ Assume both A and B are invertible. Then

AxB)'=B"'xA"" (8)

<
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Proposition 1.6 (Pseudo-Commutativity)

Assume A € M, is given.
@ Let Z € R’ be a row vector. Then

AXZ=Zx ([[®A); 9)
@ Let Z € R’ be a column vector. Then

ZxA=([[®A)XZ. (10)
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1> Multi-dimensional Cases
@ Let ¢ € R" be a column (row). Then

=fx- - xE.
k

@ LetA € M,,, and m|n or n|m. Then
A¥=Ax- - xA.
k

@ In Boolean algebra, all matrices A € M,,.,, where
m =27 and n = 27 (or for k-valued case: m = k” and
n = k?), which is the multiple-dimensional case.
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= Swap Matrix

Definition 1.7

A swap matrix, W, , is an mn x mn matrix constructed in
the following way: label its columns by

(11,12,--- ,1n,--- ;ml,m2,--- ;mn) and its rows by
(11,21,--- ,ml,--- ,1n,2n,--- ;mn). Then its element in
the position ((Z,J), (i,j)) is assigned as

1, I=iandJ =},
0, otherwise.

W, @) = 0i) = { (11)

When m = n we briefly denote W, := W, .
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Let m = 2 and n = 3, the swap matrix W), 5 is constructed

= Example
as

Example 1.8

Wiz
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= Properties

Proposition 1.9

@ Let X € R™ and Y € R” be two columns. Then
Wi X X XY =Y XX, Wy, XY xX=XKY.
@ LetA € M,,x,. Then
Wi Vr(A) = Ve(A), Wi Ve(A) = V. (A).
Q@ letX; e R% i=1,--- ,m. Then
(I ttmees @ Wi mnr] @ Iyt

X1I>("'I><XkD<Xk+1l>(-~~I><Xm
=X X - X Xpypg X X X - -0 X X

(12)
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1= Properties

Proposition 1.10
@ The swap matrix is an orthogonal matrix as

WT _ W—]

[m,n] [m,n]

= Wi

W[mﬂ]:[(srllesrln Yl Y L 5" oM

where ¢! is the ith column of 7,
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= "X VS X

CP x STP x
Domain Equal Dimension Arbitrary
Property Similar Similar
Applicability linear, bilinear multilinear
Commutativity No Pseudo-Commutative

Remark: Compare scalar product with matrix product:
@ a x b is always defined < A x B may not defined;
@ a X b=Db xa<ingeneral AB # BA.

x overcomes these two obstacles!
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1= My Book
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= My Book

Communications and Control Engineering

Daizhan Cheng
Hongsheng Qi
Zhigiang Li

Analysis and
Control of Boolean

Networks

A Semi-tensor Product Approach

@ Springer

AN INTRODUCTION TO
SEMI-TENSOR
PRODUCT or
MATRICESAND ITS
APPLICATIONS

Daizhan Cheng * Hongsheng Qi - Yin Zhao

“Woﬂd Scientific
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Il. Matrix Expression of Logic

i Logic
@ D = {0~ False, 1 ~ True}.

Logical Variables
G e E

Truth Table of Logical Functions

Table 1: Negation (—x)

=

X

0
1

—

o
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1= Logic (continued)

Truth Table of Logical Functions (continued)

Table 2: Disjunction: (x \V y); Conjunction: (x A y); Conditional:
(x — y); Biconditional: (x «» y); Exclusive Or: (xVy).

X y\x\/y XAy x—=y x&y xVy
1 1 1 1 1 1 0
1 0| 1 0 0 0 1
0 1 1 0 1 0 1
0O 0| O 0 1 1 0
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= \ector Form of Logic

@ ¢': the ith column of 1,;
@ A, :={0i=1,---,n}, A:=Dy;

Truewlwééz[(l)};

False ~ 0 ~ 05 = m :
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@ A matrix L € M, is called a logical matrix if
Col(L) C A,.

Denote by L,«, the set of n x r logical matrices.
@ LetL =[d1,62,--- 8" € L,x,. Briefly,

n’-n?

L= 5n[ilai27 o 7ir]-
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1= Vector Form of Logical Mapping

1~d;and0~ 8 =D~ A.
Hence,

@ Logical function:
f:D"—=D = A" A;
@ Logical mapping:

F:D'—-D" = A" A™

The later function (mapping) is called the vector form.
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1= Structure Matrix (1)

Lety =f(x1, -+ ,x,) : A" — A. Then there exists unique
Mf € Loyon such that

y=Mx, wherex= x__ x. (17)

Definition 2.3
The M; is called the structure matrix of f.
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i Structure Matrix (2)

Theorem 2.4
Let F: A" — A be defined by

)’i :ﬁ<X1,"' 7-xn)-
Then there exists unique My € Ly, such that
y= MFX, (1 8)

where

n . _ k
X = XX y = Xi—1Vi

Definition 2.5
The My is called the structure matrix of F.
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i Structure Matrices of Logical Operators

Table 3: Structure Matrices of Logical Operators

< T I><| 4
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An Example

Example 2.6

There are three persons.
@ A said: “Bis a liar!”
@ B said: “Cis a liar!”

@ C said: “A and B both are
liars!”

Who is the liar?
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Set P: A is honest; Q: B is honest; R: C is honest.
The logical expression is

(P+ Q)N (Q <+ "R)AN(R+ —-PAN—-Q)=1.
Its matrix form is
L(P,Q,R) = M:-M.(M.PM,Q)(M.OM,R)(M.RM.M,PM, Q)
We can calculate the canonical form of L(P, Q, R) as

00 O0O0O 0
L(P,Q,R)=L i JPQRZf%-

—_ O

1
0

Only if P = m , 0 = H ,and R = m , then L is true,

which means that only B is honest.
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1= Multi-valued Logic
°’ZDk {17](17”"&70};
@ Ay ={d},8% 67" oK.

k-valued logical variables:

X,y € Dk
Using equivalence:
k—2
b, P~—= 0
k ) k k _ 17 ) )y Yk )
we have
x,y € A

Lety =f(x1,- - ,x,) : Al — Ay. Then there exists unique
Mf € Lixi such that

y = Mx, wherex= xi_x;. (19)
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Example 2.8

A detective is investigating a murder case. He has the
following clues:

@ 80% that A or B is the murderer;
Q@ If A is the murderer, the killing time is before midnight;

© If B’s confession is true, the light in the room of
murder was on at the midnight;

Q If B’s confession is a lie, it is very possible that the
murder happened before midnight;

@ There is an evidence that the light in the room of
murder at the midnight was off.
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Example 2.8 (Continued)
Set Dg = {T, very likely, 80%, 1-80%, very unlikely, F}.
@ A: Ais murderer;
@ B: B is murderer;
@ M: murder happened before midnight;
@ S: B’s confession is true;
@ L: the light was on at midnight.

~

AVB=1[0 0 1 0 0 0] (20)
A=-M=[0 100 0 0] (21)
S—L=[1000 0 0" (22)
-S—=M=[0 100 0 0] (23)
~L=[1 00 0 0 0" (24)
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Example 2.8 (Continued)

From (24)=L=1[0 0 0 0 0 1]
Then from (22), we have

MSSL = (MSWigL)S=[1 0 0 0 0 0]
=Ss=[0 0000 1]

Similarly, 23) =M =10 0 0 0 0 1]"
Then from (21)=A=1[0 0 0 0 1 0]"
Finally, from (20)=B=[0 0 1 0 0 0]

We conclude that: A is very unlikely the murderer; B is
80% the murderer.

v
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lll. Boolean Network

Kaffman: for cellular networks, gene regulatory networks,

etc.
i Network Graph

oO—

Figure 2: A Boolean network

== Network Dynamics
A(t+1)=B(t) NC(1)
B(t+1) = —A(1) (25)
C(t+1)=B(1)VvC(1)

~~
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Boolean Control Network
= Network Graph

Figure 3: A Boolean control network

1= Network Dynamics
Its logical equation is
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= Dynamics of Boolean Network

xl(t+ 1) :fl(xl(t)> T axn<t))
ot 1) = £ (0. x®)), €D,

where
D :={0,1}.
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= Dynamics of Boolean Control Network

xl(t+ 1) :fl(xl(t)’ T 7xn(l)7u1(t)’ T 7””!0))
(t 1) = ( (I)?"' axn(t)aul(t)"" ,l/tm(l)),
yi(t) = h(x(t)), j=1,---,p,

where x;,u;,y; € D.
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i Matrix Expression of Subspace

@ State Space: X = Fy(xy, -+ ,x,)
@ Subspace: V = Fy(y1, -+ ,y), yi € X is described by

yi:ﬁ(-xl,"',xn); l:l’,k

@ Algebraic Form:
y = Fux,

where
k
X=X X, y=Xi_1Yi, F\, € Lokyon.

@ Conclusion: Each F, € Ly, uniquely determines a
subspace V.
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1= Algebraic Form of BN (27)

where L € Lonyon.
iz Algebraic Form of BCN (28)

x(t 4 1) = Lu(t)x(¢)
y(1) = Hx(1),

Where L E £2n><2n+m, H e Eszzn.
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Examples

@ Consider Boolean network (25) in Fig. 2. We have
L=0537781556].

@ Consider Boolean control network (26) in Fig. 3. We
have

L = §[11552266135724638
555566665757686 8]:
H = &21212121]
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1= Topological Structure
@ Find “fixed points”, “cycles”;
@ Find “basin of attraction” ,“transient time”;

3

@ “Rolling Gear” structure, which explains why “tiny
attractors” decide “vast order”.

References:

[4 D. Cheng, H. Qi, A linear representation of dynamics
of Boolean networks, IEEE Trans. Aut. Contr., vol. 55,
no. 10, pp. 2251-2258, 2010. (Regular Paper)

[4 D. Cheng, Input-state approach to Boolean networks,
IEEE Trans. Neural Networks, vol. 20, no. 3, pp.
512-521, 2009. (Regular Paper)
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1z Basic Control Properties
@ Controllability under open-loop or closed-loop
controls;
@ Observability;
@ Algebraic description of input-output transfer graph.

References:

[4 D. Cheng, H. Qi, Controllability and observability of
Boolean control networks, Automatica, vol. 45, no. 7,
pp. 1659-1665, 2009. (Regular Paper)

4 VY. Zhao, H. Qi, D. Cheng, Input-state incidence matrix
of Boolean control networks and its applications, Sys.
Contr. Lett., vol. 46, no. 12, pp. 767-774, 2010.
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1z System Realization

@ State space expression;

@ Input-output realization;

@ Kalman decomposition, minimum realization.
References:

[4 D. Cheng, Z. Li, H. Qi, Realization of Boolean control
networks, Automatica, vol. 46, no. 1, pp. 62-69, 2010.
(Regular Paper)

[4 D. Cheng, H. Qi, State space analysis of Boolean
network, IEEE Trans. Neural Networks, vol. 21, no. 4,
pp. 584-594, 2010. (Regular Paper)
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= Control Design

@ Disturbance decoupling;

@ Stability and stabilization;

@ Canalizing mapping and its applications.
References:
[4 D. Cheng, Disturbance Decoupling of Boolean control

networks, |IEEE Trans. Aut. Contr., vol. 56, no. 1, pp.
2-10, 2011. (Regular Paper)

4 D. Cheng, H. Qi, Z. Li, J.B. Liu, Stability and
stabilization of Boolean networks, Int. J. Robust
Nonlin. Contr., vol. 21, no. 2, pp. 134-156, 2001.
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iz Optimal Control

@ Topological structure of Boolean control networks;
@ Optimal control and its design.

@ k- and Mix-valued and higher-order control networks.

References:

[4 Y. Zhao, Z. Li, D. Cheng, Optimal control of logical
control networks IEEE Trans. Aut. Contr., vol. 56, no.
8, pp. 1766-1776, (Regular Paper).

[§ Z.Li, D. Cheng, Algebraic approach to dynamics of
multi-valued networks, Int. J. Bifurcat. Chaos, vol. 20,
no. 3, pp. 561-582, 2010.
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= |dentification

@ Identify the dynamic evolution;
@ Identify via input-output data.

References:

[4 D. Cheng, Y. Zhao, Identification of Boolean control
networks, Automatica, vol. 47, no. 4, pp. 702-710,
2011.(Regular Paper)

[4 D. Cheng, H. Qi, Z. Li, Model construction of Boolean
network via observed data, IEEE Trans. Neural
Networks, vol. 22, no. 4, pp. 525-536, 2011. (Regular
Paper)
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= My Book

Communications and Control Engineering

Daizhan Cheng
Hongsheng Qi
Zhigiang Li

Analysis and
Control of Boolean

Networks

A Semi-tensor Product Approach

@ Springer
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IV. Dynamic Game

iz Static Game

Definition 4.1

(1) A static game G consists of three ingredients: (i) n
players, named A, - - - ,A,; (ii) each player A; has k;
possible actions, denoted by x; € Dy, i = 1, -n; (iii) n
payoff functions for n players respectively as

Cj(xl :ila"' 7xn:in> :C;l iy we 7 ]: 17 , 1. (31)

(2) A setof actions s = (x,--- ,x,), is a strategy of G,
denoted by S.

(3) A strategy {x;} is a Nash equilibrium if

j(x>1k7... 77_x;<’... ’xZ)ZCj(xT7... 7xj’... ’xZ)

j=1,---,n. 194
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Example 4.2

Prisoners’ Dilemma
@ Action 1: Confess
@ Action 2: Deny

Table 4: Payoff bi-matrix

P\P

]

2

1

-3,-3

b

2

=50

1,1

Nash Equilibriumis (1, 1).
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iz Dynamic Game

Payoff Functions

— 1
Ji=lim = » ¢ix(¢)), j=1,---,n
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= Strategy with Finite Memory

Definition 4.3

A strategy for G, is called a y-memory strategy with
> 0, if its generators are

xj(t—‘f_ 1) :ﬁ(xl(t)a"' 7xn<t>="' ’xl(t_:u_’_ 1)7
'7xn(t_,u+1))7 j:1,2,---,n,

with initial conditions

xj(tO):xéoa ]:laana l():O,l,"'“LL—l.

(33)

w1 = 1is particularly important.
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=z Human-Machine Game

Theorem 4.4
(1) The best strategy is state-control periodic.
(2) The best strategy (h*(z)) satisfies
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= Human-Machine Game (continued)
Find best strategy:

(1) find cycles on state-control space;
(2) find optimal L, where

L € Lyxpg,

where p: Number of machine strategies; ¢: Number
of human strategies;

References:
[4 Y. Zhao, Z. Li, D. Cheng, Optimal control of logical

control networks, IEEE Trans. Aut. Contr., vol. 56, no.

8, pp. 1766-1776, 2011 (Regular Paper).
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= Mixed Strategy
Consider player i:

Si — {172a U 7ki}
x; =j, with Probability p;(j),
ki
where > p:(j) = L.

j=1
@ Finite Horizon case:

T =E | Y Ney(h(2), m(2))|m(0)

Here 0 < A < 1 (discount factor).
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Theorem 4.5
Let J*(m(0)) be the optimal value of J,,. Then

J*(x(0)) = Jo(x(0)), (36)

where the function Jj is given by the last step of a
dynamic programming algorithm. Setting

¢, := Nc(h(t), m(t)), the algorithm proceeds backward in
time from time step N to time step 0 as follows.

In(m(N)) = smax ci(h(N), m(N)). (37)

andfort=N—-1,N—2,---,1,0:
Ji(m(t)) = JB?’LE [c:(h(t),m(t)) + Jep1(m(t + 1)) m(2), h(2)] .
(38)
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@ Infinite Horizon case:
Jh=E|>_ Xey(h(t),m(1))|m(0)
=1

Receding Horizon Based Feedback Control:
Denote

i i, o) el )] =

M := max |c(h,m)| < oco.
heA, ,meA;
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Theorem 4.6

Assume d > 0. Then the optimal control sequence
u*(0),u*(1),- - - obtained by receding horizon control is
exactly the optimal control for the infinite horizon case,
provided that the prediction horizon length /¢ satisfies

(1-\)d

v

B D. Cheng, Y. Zhao, T. Xu. Receding horizon based feedback optimization for
mix-valued logical networks, IEEE Trans. Aut. Contr., In press, On line: http://
ieeexplore.ieee.org/xpl/articleDetails. jsp?arnumber=7079492,

DOI: 10.1109/TAC.2015.2419874.
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1= Networked Evolutionary Games

Definition 4.7

A networked evolutionary game (NEG), denoted by

G = ((N,E),G,1I), consists of three factors:

(i) a network graph: (N, E);

(if) a fundamental network game (FNG): G with two
players. Players i and j play this game provided
(i,j) € E.

(iii) a local information based strategy updating rule
(SUR):

xi(t+ 1) =fi(x;(2),c;(2) | j € U(Q)), i=1,---,n. (40)

v

B D. Cheng, F. He, H. Qi, T. Xu. Modeling, analysis and control of networked
evolutionary games, IEEE Trans. Aut. Contr., In press, On line: http://
ieeexplore.ieee.org/xpl/articleDetails. jsp?arnumber=7042754,

DOI: 10.1109/TAC.2015.2404471. (Regular Paper)


http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7042754
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7042754

V. Concluding Remarks

The algebraic state space representation of logical
dynamic systems has various applications:

@ (networked) evolutionary games;

@ logical circuit design and related topics:

@ cryptography:

@ fuzzy control:

@ graph theory and formation control:

@ communication;

@ control of power systems and engine transient
control;
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Thank you!

Question?
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