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I. Semi-tensor Product of Matrices

+ Tensor (Kronecker) Product

Am×n ⊗ Bp×q :=
a11B a12B · · · a1mB
a11B a12B · · · a1mB

...
a11B a12B · · · a1mB

 ∈Mmp×nq.
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+ An Example

Example 1.1

A =

[
a b c
d e f

]
, B = I2 =

[
1 0
0 1

]
.

A⊗ B =


a 0 b 0 c 0
0 a 0 b 0 c
d 0 e 0 f 0
0 d 0 e 0 f

 .
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+ Semi-tensor Product of Matrices
Am×n × Bp×q =?

Definition 1.2
Let A ∈Mm×n and B ∈Mp×q. Denote

t := lcm(n, p).

Then we define the semi-tensor product (STP) of A and B
as

A n B :=
(
A⊗ It/n

) (
B⊗ It/p

)
∈M(mt/n)×(qt/p). (1)
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+ Some Basic Comments
When n = p, A n B = AB. So the STP is a
generalization of conventional matrix product.
When n = rp, denote it by A �r B;
when rn = p, denote it by A ≺r B.
These two cases are called the multi-dimensional
case, which is particularly important in applications.
STP keeps almost all the major properties of the
conventional matrix product unchanged.
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+ Examples

Example 1.3

1. Let X =
[
1 2 3 −1

]
and Y =

[
1
2

]
. Then

X n Y =
[
1 2

]
· 1 +

[
3 −1

]
· 2 =

[
7 0

]
.

2. Let X =
[
−1 2 1 −1 2 3

]T and Y =
[
1 2 −2

]
.

Then

X n Y =

[
−1
2

]
· 1 +

[
1
−1

]
· 2 +

[
2
3

]
· (−2) =

[
−3
−6

]
.
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Example 1.3 (Continued)
3. Let

A =

1 2 1 1
2 3 1 2
3 2 1 0

 , B =

[
1 −2
2 −1

]
.

Then

A n B =



[
1 2 1 1

] [1
2

] [
1 2 1 1

] [−2
−1

]
[
2 3 1 2

] [1
2

] [
2 3 1 2

] [−2
−1

]
[
3 2 1 0

] [1
2

] [
3 2 1 0

] [−2
−1

]



=

3 4 −3 −5
4 7 −5 −8
5 2 −7 −4

 .
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+ Insight Meaning

Let A ∈Mm×n. Consider a bilinear form

P(x, y) = xTAy. (2)

Row Stacking Form:

Vr(A) = (a11, a12, · · · , a1n, · · · , am1, · · · , amn).

Column Stacking Form

Vc(A) = (a11, a21, · · · , am1, · · · , a1n, · · · , amn).

Then (using Row Stacking Form:)

P(x, y) = Vr(A) n x n y. (3)

n can search pointer mechanically!
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+ Multi-linear Mapping

P : Rm × Rn × Rs → R.
Cubic Matrix?

d111 d112 · · · d11n

d121 d122 · · · d12n
··· ··· ···

d1m1 d1m2 · · · d1mn

dk11 dk12 · · · dk1n

dk21 dk22 · · · dk2n
··· ··· ···

dkm1 dkm2 · · · dkmn

kt
h

la
ye

r

dp11 dp12 · · · dp1n

dp21 dp22 · · · dp2n

··· ··· ···
dpm1 dpm2 · · · dpmn

Figure 1: A cubic matrix
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P(δi
m, δ

j
n, δ

k
s ) := di,j,k,

i = 1, · · · ,m; j = 1, · · · , n; k = 1, · · · , s.

Define

MP = [d111, · · · , d11s, · · · , dmn1, · · · , dmns].

Then

P(x, y, z) = MP n x n y n z. (4)

It is available for general multi-linear mappings.
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+ A Syntheses

STP : Am×n n Bp×q

n = p → AB = A n B (Conventional)
Ai := Coli(A) → A⊗ B = [A1 n B, · · · ,An n B] (Kronecker)

n = q → A ∗ B = [A1 n B1, · · · ,An n Bn] (Khatri-Lao)

a syntheses of multi-products;
with multi-functions of several products.
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+ Properties

Proposition 1.4
(Distributive rule)

A n (αB + βC) = αA n B + βA n C;
(αB + βC) n A = αB n A + βC n A, α, β ∈ R. (5)

(Associative rule)

A n (B n C) = (A n B) n C. (6)
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Proposition 1.5

(A n B)T = BT n AT . (7)

Assume both A and B are invertible. Then

(A n B)−1 = B−1 n A−1. (8)
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Proposition 1.6 (Pseudo-Commutativity)
Assume A ∈Mm×n is given.

Let Z ∈ Rt be a row vector. Then

A n Z = Z n (It ⊗ A); (9)

Let Z ∈ Rt be a column vector. Then

Z n A = (It ⊗ A) n Z. (10)
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+ Multi-dimensional Cases

Let ξ ∈ Rn be a column (row). Then

ξk := ξ n · · ·n ξ︸ ︷︷ ︸
k

.

Let A ∈Mm×n and m|n or n|m. Then

Ak := A n · · ·n A︸ ︷︷ ︸
k

.

In Boolean algebra, all matrices A ∈Mm×n, where
m = 2p and n = 2q (or for k-valued case: m = kp and
n = kq), which is the multiple-dimensional case.
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+ Swap Matrix

Definition 1.7
A swap matrix, W[m,n] is an mn× mn matrix constructed in
the following way: label its columns by
(11, 12, · · · , 1n, · · · ,m1,m2, · · · ,mn) and its rows by
(11, 21, · · · ,m1, · · · , 1n, 2n, · · · ,mn). Then its element in
the position ((I, J), (i, j)) is assigned as

w(IJ),(ij) = δI,J
i,j =

{
1, I = i and J = j,
0, otherwise.

(11)

When m = n we briefly denote W[n] := W[n,n].
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+ Example

Example 1.8
Let m = 2 and n = 3, the swap matrix W[2,3] is constructed
as

(11) (12) (13) (21) (22) (23)

W[2,3] =


1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1


(11)
(21)
(12)
(22)
(13)
(23)

.
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+ Properties

Proposition 1.9

Let X ∈ Rm and Y ∈ Rn be two columns. Then

W[m,n] n X n Y = Y n X, W[n,m] n Y n X = X n Y. (12)

Let A ∈Mm×n. Then

W[m,n]Vr(A) = Vc(A), W[n,m]Vc(A) = Vr(A). (13)

Let Xi ∈ Rni , i = 1, · · · ,m. Then(
In1+···+nk−1 ⊗W[nk,nk+1] ⊗ Ink+2+···+nm

)
X1 n · · ·n Xk n Xk+1 n · · ·n Xm

= X1 n · · ·n Xk+1 n Xk n · · ·n Xm.

(14)
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+ Properties

Proposition 1.10
The swap matrix is an orthogonal matrix as

WT
[m,n] = W−1

[m,n] = W[n,m]. (15)

W[m,n] =
[
δ1

n n δ1
m · · · δn

n n δ1
m · · · · · · δn

n n δm
m

]
,

(16)

where δi
n is the ith column of In.
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+ “×” vs “n”

CP × STP n
Domain Equal Dimension Arbitrary
Property Similar Similar

Applicability linear, bilinear multilinear
Commutativity No Pseudo-Commutative

Remark: Compare scalar product with matrix product:
a× b is always defined⇔ A× B may not defined;
a× b = b× a⇔ in general AB 6= BA.

n overcomes these two obstacles!
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+ My Book
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+ My Book
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II. Matrix Expression of Logic

+ Logic
D = {0 ∼ False, 1 ∼ True}.

Logical Variables
x, y · · · ∈ D

Truth Table of Logical Functions

Table 1: Negation (¬x)

x ¬x
1 0
0 1
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+ Logic (continued)

Truth Table of Logical Functions (continued)

Table 2: Disjunction: (x ∨ y); Conjunction: (x ∧ y); Conditional:
(x→ y); Biconditional: (x↔ y); Exclusive Or: (x∨̄y).

x y x ∨ y x ∧ y x→ y x↔ y x∨̄y
1 1 1 1 1 1 0
1 0 1 0 0 0 1
0 1 1 0 1 0 1
0 0 0 0 1 1 0
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+ Vector Form of Logic

δi
n: the ith column of In;

∆n := {δi
n|i = 1, · · · , n}, ∆ := D2;

True ∼ 1 ∼ δ1
2 =

[
1
0

]
;

False ∼ 0 ∼ δ2
2 =

[
0
1

]
.
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A matrix L ∈Mn×r is called a logical matrix if

Col(L) ⊂ ∆n.

Denote by Ln×r the set of n× r logical matrices.
Let L = [δi1

n , δ
i2
n , · · · , δir

n ] ∈ Ln×r. Briefly,

L = δn[i1, i2, · · · , ir].

Example 2.1 1 0 0 0
0 0 1 0
0 1 0 1

 = δ3[1, 3, 2, 3].
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+ Vector Form of Logical Mapping

1 ∼ δ1
2; and 0 ∼ δ2

2 ⇒ D ∼ ∆.

Hence,

Logical function:

f : Dn → D ⇒ ∆n → ∆;

Logical mapping:

F : Dn → Dm ⇒ ∆n → ∆m.

The later function (mapping) is called the vector form.
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+ Structure Matrix (1)

Theorem 2.2
Let y = f (x1, · · · , xn) : ∆n → ∆. Then there exists unique
Mf ∈ L2×2n such that

y = Mf x, where x = nn
i=1xi. (17)

Definition 2.3
The Mf is called the structure matrix of f .
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+ Structure Matrix (2)

Theorem 2.4
Let F : ∆n → ∆k be defined by

yi = fi(x1, · · · , xn).

Then there exists unique MF ∈ L2k×2n such that

y = MFx, (18)

where
x = nn

i=1xi; y = nk
i=1yi.

Definition 2.5
The MF is called the structure matrix of F.
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+ Structure Matrices of Logical Operators

Table 3: Structure Matrices of Logical Operators

¬ Mn δ2[2 1]
∨ Md δ2[1 1 1 2]
∧ Mc δ2[1 2 2 2]
→ Mi δ2[1 2 1 1]
↔ Me δ2[1 2 2 1]
∨̄ Mp δ2[2 1 1 2]
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An Example

Example 2.6
There are three persons.

A said: “B is a liar!”
B said: “C is a liar!”
C said: “A and B both are
liars!”

Who is the liar?
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Set P: A is honest; Q: B is honest; R: C is honest.
The logical expression is

(P↔ ¬Q) ∧ (Q↔ ¬R) ∧ (R↔ ¬P ∧ ¬Q) = 1.

Its matrix form is

L(P,Q,R) = McMc(MePMnQ)(MeQMnR)(MeRMcMnPMnQ)

We can calculate the canonical form of L(P,Q,R) as

L(P,Q,R) =

[
0 0 0 0 0 1 0 0
1 1 1 1 1 0 1 1

]
PQR = δ1

2.

Only if P =

[
0
1

]
, Q =

[
1
0

]
, and R =

[
0
1

]
, then L is true,

which means that only B is honest.
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+ Multi-valued Logic
Dk = {1, k−2

k−1 , · · · ,
1

k−1 , 0};
∆k = {δ1

k , δ
2
k , · · · , δk−1

k , δk
k}.

k-valued logical variables:

x, y ∈ Dk

Using equivalence:

δ1
k ∼ 1, δ2

k ∼
k − 2
k − 1

, , · · · , δk
k ∼ 0,

we have
x, y ∈ ∆k.

Theorem 2.7
Let y = f (x1, · · · , xn) : ∆n

k → ∆k. Then there exists unique
Mf ∈ Lk×kn such that

y = Mf x, where x = nn
i=1xi. (19)
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Example 2.8
A detective is investigating a murder case. He has the
following clues:

1 80% that A or B is the murderer;
2 If A is the murderer, the killing time is before midnight;
3 If B’s confession is true, the light in the room of

murder was on at the midnight;
4 If B’s confession is a lie, it is very possible that the

murder happened before midnight;
5 There is an evidence that the light in the room of

murder at the midnight was off.
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Example 2.8 (Continued)
Set D6 = {T, very likely, 80%, 1-80%, very unlikely,F}.

A: A is murderer;
B: B is murderer;
M: murder happened before midnight;
S: B’s confession is true;
L: the light was on at midnight.

A ∨ B =
[
0 0 1 0 0 0

]T (20)

A→ ¬M =
[
0 1 0 0 0 0

]T (21)

S→ L =
[
1 0 0 0 0 0

]T (22)

¬S→ M =
[
0 1 0 0 0 0

]T (23)

¬L =
[
1 0 0 0 0 0

]T (24)
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Example 2.8 (Continued)

From (24)⇒ L =
[
0 0 0 0 0 1

]T

Then from (22), we have

M6
i SL = (M6

i W[6]L)S =
[
1 0 0 0 0 0

]T

⇒ S =
[
0 0 0 0 0 1

]T

Similarly, (23)⇒ M =
[
0 0 0 0 0 1

]T

Then from (21)⇒ A =
[
0 0 0 0 1 0

]T

Finally, from (20)⇒ B =
[
0 0 1 0 0 0

]T

We conclude that: A is very unlikely the murderer; B is
80% the murderer.
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III. Boolean Network
Kaffman: for cellular networks, gene regulatory networks,
etc.
+ Network Graph

A B

C

Figure 2: A Boolean network

+ Network Dynamics
A(t + 1) = B(t) ∧ C(t)
B(t + 1) = ¬A(t)
C(t + 1) = B(t) ∨ C(t)

(25)
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Boolean Control Network
+ Network Graph

A

B

C

u1

u2

y

Figure 3: A Boolean control network

+ Network Dynamics
Its logical equation is

A(t + 1) = B(t) ∧ u1(t)
B(t + 1) = C(t) ∨ u2(t)
C(t + 1) = A(t)
y(t) = ¬C(t)

(26)
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+ Dynamics of Boolean Network


x1(t + 1) = f1(x1(t), · · · , xn(t))
...

xn(t + 1) = fn(x1(t), · · · , xn(t)), xi ∈ D,
(27)

where
D := {0, 1}.
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+ Dynamics of Boolean Control Network


x1(t + 1) = f1(x1(t), · · · , xn(t), u1(t), · · · , um(t))
...

xn(t + 1) = fn(x1(t), · · · , xn(t), u1(t), · · · , um(t)),
yj(t) = hj(x(t)), j = 1, · · · , p,

(28)

where xi, ui, yi ∈ D.
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+ Matrix Expression of Subspace

State Space: X = F`(x1, · · · , xn)

Subspace: V = F`(y1, · · · , yk), yi ∈ X is described by

yi = fi(x1, · · · , xn), i = 1, · · · , k.

Algebraic Form:
y = Fvx,

where

x = nn
i=1xi, y = nk

i=1yi, Fv ∈ L2k×2n .

Conclusion: Each Fv ∈ L2k×2n uniquely determines a
subspace V.
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+ Algebraic Form of BN (27)

x(t + 1) = Lx(t), (29)

where L ∈ L2n×2n.

+ Algebraic Form of BCN (28){
x(t + 1) = Lu(t)x(t)
y(t) = Hx(t),

(30)

where L ∈ L2n×2n+m, H ∈ L2p×2n.
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Examples

Example 3.5
Consider Boolean network (25) in Fig. 2. We have

L = δ8[3 7 7 8 1 5 5 6].

Consider Boolean control network (26) in Fig. 3. We
have

L = δ8[1 1 5 5 2 2 6 6 1 3 5 7 2 4 6 8
5 5 5 5 6 6 6 6 5 7 5 7 6 8 6 8];

H = δ2[2 1 2 1 2 1 2 1].
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+ Topological Structure

Find “fixed points”, “cycles”;
Find “basin of attraction” ,“transient time”;
“Rolling Gear” structure, which explains why “tiny
attractors” decide “vast order”.

References:

D. Cheng, H. Qi, A linear representation of dynamics
of Boolean networks, IEEE Trans. Aut. Contr., vol. 55,
no. 10, pp. 2251-2258, 2010. (Regular Paper)

D. Cheng, Input-state approach to Boolean networks,
IEEE Trans. Neural Networks, vol. 20, no. 3, pp.
512-521, 2009. (Regular Paper)
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+ Basic Control Properties

Controllability under open-loop or closed-loop
controls;
Observability;
Algebraic description of input-output transfer graph.

References:

D. Cheng, H. Qi, Controllability and observability of
Boolean control networks, Automatica, vol. 45, no. 7,
pp. 1659-1665, 2009. (Regular Paper)

Y. Zhao, H. Qi, D. Cheng, Input-state incidence matrix
of Boolean control networks and its applications, Sys.
Contr. Lett., vol. 46, no. 12, pp. 767-774, 2010.
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+ System Realization

State space expression;
Input-output realization;
Kalman decomposition, minimum realization.

References:

D. Cheng, Z. Li, H. Qi, Realization of Boolean control
networks, Automatica, vol. 46, no. 1, pp. 62-69, 2010.
(Regular Paper)

D. Cheng, H. Qi, State space analysis of Boolean
network, IEEE Trans. Neural Networks, vol. 21, no. 4,
pp. 584-594, 2010. (Regular Paper)
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+ Control Design

Disturbance decoupling;
Stability and stabilization;
Canalizing mapping and its applications.

References:

D. Cheng, Disturbance Decoupling of Boolean control
networks, IEEE Trans. Aut. Contr., vol. 56, no. 1, pp.
2-10, 2011. (Regular Paper)

D. Cheng, H. Qi, Z. Li, J.B. Liu, Stability and
stabilization of Boolean networks, Int. J. Robust
Nonlin. Contr., vol. 21, no. 2, pp. 134-156, 2001.
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+ Optimal Control

Topological structure of Boolean control networks;
Optimal control and its design.
k- and Mix-valued and higher-order control networks.

References:

Y. Zhao, Z. Li, D. Cheng, Optimal control of logical
control networks IEEE Trans. Aut. Contr., vol. 56, no.
8, pp. 1766-1776, (Regular Paper).

Z. Li, D. Cheng, Algebraic approach to dynamics of
multi-valued networks, Int. J. Bifurcat. Chaos, vol. 20,
no. 3, pp. 561-582, 2010.
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+ Identification

Identify the dynamic evolution;
Identify via input-output data.

References:

D. Cheng, Y. Zhao, Identification of Boolean control
networks, Automatica, vol. 47, no. 4, pp. 702-710,
2011.(Regular Paper)

D. Cheng, H. Qi, Z. Li, Model construction of Boolean
network via observed data, IEEE Trans. Neural
Networks, vol. 22, no. 4, pp. 525-536, 2011. (Regular
Paper)
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+ My Book
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IV. Dynamic Game
+ Static Game
Definition 4.1
(1) A static game G consists of three ingredients: (i) n

players, named A1, · · · ,An; (ii) each player Ai has ki

possible actions, denoted by xi ∈ Dki, i = 1, ·n; (iii) n
payoff functions for n players respectively as

cj(x1 = i1, · · · , xn = in) = cj
i1 i2 ··· in , j = 1, · · · , n. (31)

(2) A set of actions s = (x1, · · · , xn), is a strategy of G,
denoted by S.

(3) A strategy {x∗j } is a Nash equilibrium if

cj(x∗1, · · · , , x∗j , · · · , x∗n) ≥ cj(x∗1, · · · , xj, · · · , x∗n)
j = 1, · · · , n. (32)
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Example 4.2
Prisoners’ Dilemma

Action 1: Confess
Action 2: Deny

Table 4: Payoff bi-matrix

P1\P2 1 2
1 -3,-3 0,-5
2 -5,0 -1,-1

Nash Equilibrium is (1, 1).
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+ Dynamic Game

G⇒ G∞

Payoff Functions

Jj = lim
T→∞

1
T

T∑
t=1

cj(x(t)), j = 1, · · · , n.
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+ Strategy with Finite Memory

Definition 4.3
A strategy for G∞ is called a µ-memory strategy with
µ > 0, if its generators are

xj(t + 1) = fj(x1(t), · · · , xn(t), · · · , x1(t − µ+ 1),
· · · , xn(t − µ+ 1)), j = 1, 2, · · · , n, (33)

with initial conditions

xj(t0) = xj
t0 , j = 1, · · · , n; t0 = 0, 1, · · · , µ− 1.

µ = 1 is particularly important.
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+ Human-Machine Game

m(t + 1) = f (m(t), h(t)), (34)

Jh = lim
T→∞

1
T

T∑
t=1

ch(x(t)).

Theorem 4.4
(1) The best strategy is state-control periodic.
(2) The best strategy (h∗(t)) satisfies

h∗(t + 1) = g(m(t), h(t)) = Lm(t)h(t). (35)
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+ Human-Machine Game (continued)
Find best strategy:
(1) find cycles on state-control space;
(2) find optimal L, where

L ∈ Lq×pq,

where p: Number of machine strategies; q: Number
of human strategies;

References:

Y. Zhao, Z. Li, D. Cheng, Optimal control of logical
control networks, IEEE Trans. Aut. Contr., vol. 56, no.
8, pp. 1766-1776, 2011 (Regular Paper).
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+ Mixed Strategy
Consider player i:

Si = {1, 2, · · · , ki}

xi = j, with Probability pi(j),

where
ki∑

j=1
pi(j) = 1.

Finite Horizon case:

Jh = E

[
N∑

t=1

λtch(h(t),m(t))
∣∣m(0)

]
.

Here 0 < λ < 1 (discount factor).
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Theorem 4.5
Let J∗(m(0)) be the optimal value of Jh. Then

J∗(x(0)) = J0(x(0)), (36)

where the function J0 is given by the last step of a
dynamic programming algorithm. Setting
ct := λtc(h(t),m(t)), the algorithm proceeds backward in
time from time step N to time step 0 as follows.

JN(m(N)) = max
h(N)∈∆r

ct(h(N),m(N)). (37)

and for t = N − 1,N − 2, · · · , 1, 0:

Jt(m(t)) = max
h(t)∈∆r

E [ct(h(t),m(t)) + Jt+1(m(t + 1))|m(t), h(t)] .

(38)
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Infinite Horizon case:

Jh = E

[
∞∑

t=1

λtch(h(t),m(t))
∣∣m(0)

]
.

Receding Horizon Based Feedback Control:
Denote

min
h∈∆k

min
hi 6=hj∈∆r

∣∣c(m, hi)− c(m, hj)
∣∣ := d.

M := max
h∈∆r,m∈∆k

|c(h,m)| <∞.
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Theorem 4.6
Assume d > 0. Then the optimal control sequence
u∗(0), u∗(1), · · · obtained by receding horizon control is
exactly the optimal control for the infinite horizon case,
provided that the prediction horizon length ` satisfies

` > logλ
(1− λ)d

2M
. (39)

D. Cheng, Y. Zhao, T. Xu. Receding horizon based feedback optimization for
mix-valued logical networks, IEEE Trans. Aut. Contr., In press, On line: http://
ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7079492,
DOI: 10.1109/TAC.2015.2419874.
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+ Networked Evolutionary Games

Definition 4.7
A networked evolutionary game (NEG), denoted by
G = ((N,E),G,Π), consists of three factors:
(i) a network graph: (N,E);

(ii) a fundamental network game (FNG): G with two
players. Players i and j play this game provided
(i, j) ∈ E.

(iii) a local information based strategy updating rule
(SUR):

xi(t + 1) = fi(xj(t), cj(t) | j ∈ U(i)), i = 1, · · · , n. (40)

D. Cheng, F. He, H. Qi, T. Xu. Modeling, analysis and control of networked
evolutionary games, IEEE Trans. Aut. Contr., In press, On line: http://
ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7042754,
DOI: 10.1109/TAC.2015.2404471. (Regular Paper)
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V. Concluding Remarks

The algebraic state space representation of logical
dynamic systems has various applications:

(networked) evolutionary games;
logical circuit design and related topics:
cryptography:
fuzzy control:
graph theory and formation control:
communication;
control of power systems and engine transient
control;
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Thank you!

Question?
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