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I. An Introduction to Game Theory

= Game Theory

Figure 1: John von Neumann

® J. von Neumann and O. Morgenstern, Theory of
Games and Economic Behavior, Princeton University

Press, Princeton, New Jersey, 1944. e



= Non-Cooperative Game
(Winner of Nobel Prize in Economics 1994)

Figure 2: John Forbes Nash Jr.

¥ J. Nash, Non-cooperative game, The Annals of Math-
ematics, Vol. 54, No. 2, 286-295, 1951.
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iz Cooperative Game
(Winner of Nobel Prize in Economics 2012 with Roth)

Figure 3: Lloyd S. Shapley

¥ D. Gale, L.S. Shapley, Colle admissions and the stabil-
ity of marriage, Vol. 69, American Math. Monthly, 9-15,
1962.
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= Market Power and Regulation
(Winner of Nobel Prize in Economics 2014)

Figure 4: Jean Tirole

¥ D. Fudenberg and J. Tirole, Game Theory, MIT Press, Cam-
bridge, MA, 1991.

¥ J. Tirole, The Theory of Industrial Organization, MIT Press,
Cambridge, MA, 1988.

6/76



= Normal Non-cooperative Game

Definition 1.1
A normal game G = (N, S, ¢):

(i) Player: N = {1,2,--- ,n}.

(ii) Strategy: Si=D, i=1,---,n,

where
Dy :={1,2,--- ,k}.

(i) Profile: s=]]s-
i=1

(iv) Payoff function:

¢: S—R, j=1,---,n.

c:={c1, et
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i Nash Equilibrium

Definition 1.2

In a normal game G, a profile

s=(x1,---.,x;) €S

is a Nash equilibrium if

Cj(.xik,"' ,7x;,‘<’... 7x:)2Cj(xT7...

j=

7'xj7..'

5°0°

%)

- .

(@)

<
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iz Nash Equilibrium
Consider a game G with two players: P, and P»:
@ Strategies of P;: D, = {1,2};
@ Strategies of P,: D3 = {1,2,3}.

Table 1: Payoff bi-matrix
P\P, | 1 2 3

1 [2,1]3 2[6,1
2 |1,6]2 3

(1,2) is a Nash equilibrium.
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. Mixed Strategies

Definition 1.4
Assume the set of strategies for Player i is

Si={1,+ K}
Then Player i may take j € S; with probability », > 0, j =
1,---, k;, where

ki

er = 1.

j=1

Such a strategy is called a mixed strategy. Denote by

Xi = (rl7r27”' 7rki)T€A(Si>‘
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Notations

@ Mixed Strategy:

k
Tk::{r17r27 » 1 "’12 Z - }

@ Probabilistic Matrix:

Viuscn = {M € My | Col(M) C T,,}.
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i Existence of Nash Equilibrium
Definition 1.5 (Nash 1950)

In the n-player normal game, G = (N, S, ¢), if [N| and |S;|,
i = 1,---,n are finite, then there exists at least one Nash
equilibrium, possibly involving mixed strategies.
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Il. Semi-tensor Product of Matrices

Apmsn X Bpyg =7

Definition 2.1
LetA € M,,, and B € M,,,. Denote

t:=lem(n, p).

Then we define the semi-tensor product (STP) of A and B
as

AxB:=(A®1Lu) (B&1L)) € Mumxp-  (3)

v
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= |mportant Comments

@ Whenn =p, A x B=AB. So the STP is a generaliza-
tion of conventional matrix product.
© STP keeps almost all the major properties of the con-
ventional matrix product available.
@ Associativity, Distributivity;
o (Ax B)T =BT x AT,
e AxB) '=B"1xAl;. ...
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i Logical Variable and Logical Matrix
@ \Vector Form of Logical Variables: x € D, = {1,2,--- k},

we identify
i~ 0, Q=1 k,

where 4! is the i th column of I,. Then x € A;, where
Ag= {0}, , 0}
@ Logical Matrix:
L= [51]:1175;27 75;]121]7

shorthand form:

L= 5m[k17k27 U 7kn]
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. Matrix Expression of Logical Functions

Theorem 2.1
Letx; € Dy, i=1,--- ,n be a set of logical variables.
@ Letf:[[_, Dy — Dy and
y:f(xlv"' ,Xn). (4)

Then there exists a unique matrix M; € Ly« (k =
[T, k) such that in vector form

y =My X x; == Myx, (5)

where x = x!_,x;. My is called the structure matrix of
f, and (5) is the algebraic form of (4).

o
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1= Matrix Expression of Pseudo-logical Functions

Theorem 2.1(cont’d)
o Letc:[[., Dy, —Rand

h:C<x1>"' 7xn)' (6)

Then there exists a unique (row) vector V. € R, such
that in vector form

h = V.x, (7)

V. is called the structure vector of ¢, and (7) is the
algebraic form of (6)

v
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iz Khatri-Rao Product
Definition 2.2

LetA € M, ., B € Myyn. Then the Khatri-Rao product of
A and B is defined as

M x N := [Col (M) x Col;(N) - - Col,,(M) x Col,(N)]. (8)
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i Matrix Expression of Logical Mapping
Letx,‘,ijDk,iZ Lo ,nj=1,--- . m, andF:D,’(‘ _)D]rcn be

yj:fj"(xlv"'axn)v .]:177m (9)
Then in vector form we have

J’j:ija ]:177’" (10)

Theorem 2.3
F can be expressed as

y = Mpx. (11)

where y = xi.,y;, and

MF:MI*MZ*“‘*MmE»C2m><2"- (12)
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lll. Potential Games

iz \ector Space Structure of Finite Games
@ Gk, kn] the set of finite games with |N| = n, |Si| =
i=1,-
@ In vector form: XES =0, i=1,--m
@ ¢;: [[_, Dy — R can be expressed (in vector form) as

_ C n R
C,‘(.X],“‘,Xn>—Vi Iszlxja l—l,"',l’l,

where V¢ is the structure vector of c;.

@ Set
Vg :=[V§, V5, --- V] € R™,

Then each G € Gy, .. 1, is uniquely determined by
V. Hence, Gy, ... ) has a natural vector structure as

g[n;kl,m K] Rnk'
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1> Potential Games

Definition 3.1
Consider a finite game G = (N, S, C). G is a potential game
if there exists a function P : S — R, called the potential
function, such that for every i € N and for every s=' € S
and Vx,y € §;

Ci(X, s_i) - Ci(ya S_i) = P(x, S_i) — P(y,s_")7 i=1,-. n
(13)

<

® D. Monderer, L.S. Shapley, Potential Games, Games
and Economic Behavior, Vol. 14, 124-143, 1996.
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= Fundamental Properties

Theorem 3.2

If G is a potential game, then the potential function P is
unigue up to a constant number. Precisely if P, and P, are
two potential functions, then P, — P, = ¢y € R.

| A

Theorem 3.3

Every finite potential game possesses a pure Nash equilib-
rium. Certain evolutions (Sequential or cascading MBRA)
lead to a Nash equilibrium.

4

® D. Monderer, L.S. Shapley, Potential games, Games
Econ. Theory, 97, 81-108, 1996.
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= |s a Game Potential?
Numerical computation (n = 2):
@ Shapley (96): O(k*);
@ Hofbauer (02): O(K%);
@ Hilo (11):  O(k%);
@ Cheng (14):  Potential Equation.
Hilo: “It is not easy, however, to verify whether a given
game is a potential game.”

® D. Monderer, L.S. Shapley, Potential games, Games
Econ. Theory, 97, 81-108, 1996.

@ J. Hofbauer, G. Sorger, A differential game approach
to evolutionary equilibrium selection, Int. Game Theory
Rev. 4, 17-31, 2002.

¥ Y. Hino, An improved algorithm for detecting potential
games, Int. J. Game Theory, 40, 199-205, 2011.

® D. Cheng, On finite potential games, Automatica, Vol.
EN NA 7 4702.1901 2044
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Lemma 3.4

G is a potential game if and only if there exist
di(xy, -+ , X, ,x,), Which is independent of x;, such that

Ci(xl7'“ a-xn) :P()C1,"' a-xn)

+di(‘xl7“'7-§ci7"',xn), izl,"-,n’ (14)
where P is the potential function.
Structure Vector Express:
C,‘(X], U 7xn) o= VL —1 X
di(xh...’fci’...’xn) = V Ix]?él-x]y i:17...7n7
P(XI’-.- 7xﬂ) = VP D(J 1
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Define:

dra . Mk a=p
I, qg<p.

Construct:

Ei = Ik[|,;_1] & lk,- ®Ik[i+l,n]

€ My, i=1,--+,n. (15)

Note that 1, € R¥ is a column vector with all entries equal
1; I, € My, is the identity matrix and 7, := 1.

&=WH" eR', i=1,-.n (16)
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== Potential Equation
Then (14) can be expressed as a linear system:

E¢ = b, (17)
where
-E, E, 0 --- 0 & (V5 — Vf)T
. _?51 0 E; 0 . e §;2 he (V§—.Vf)r
E, 0 0 - E 3 (Ve — Vo)

(18)

(17) is called the potential equation and V is called the
potential matrix.
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=z Main Result

Theorem 3.5

A finite game G is potential if and only if the potential equa-
tion has solution. Moreover, the potential P can be calcu-
lated by

Ve=V{—V{(E) =Vi-& (1 ®L). (19)

v
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Example 3.6

Consider a prisoner’s dilemma with the payoff bi-matrix as
in Table 2.

Table 2: Payoff Bi-matrix of Prisoner's Dilemma
Pi\P, 1 2
I [RR)|(ST)
2 | (1,8 | (P, P)
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Example 3.6 (cont’d)

From Table 2
Vi= (R,S, T, P)

VS = (R,T,S,P).

Assume V¢ = (a,b) and V§ = (c,d). Itis easy to calculate
that

e
[l
S
—_—
— N

29/76



Example 3.6 (cont’d)

Then the potential equation (18) becomes

1
1
0
0

—_—— O O

QLo & Q
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Example 3.6 (cont’d)
It is easy to solve it out as

a=c=T —c¢y
b=d=S5— Co
where ¢y € R is an arbitrary number. We conclude that the

general Prisoner’s Dilemma is a potential game.
Using (19), the potential can be obtained as

Ve = Vi-ViD}" (21)
= (R—T,0,0,P—S8)+co(l,1,1,1).

4
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From (17), G is potential if and only if

(Vs = Vi)
(Vs —Vvp)T
€ Span(E). (22)
(Vi —=vi)T
Since V¢ is free, we have
v
(Vs — Vi)
(Vs =Vi)'| ¢ Span(E°), (23)
(Vi = VD)

where
E¢ = {Ik O} .
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Equivalently, we have

VcT
L, 0 .-« 0 EV;C;T
L L --- 0
R (VST | e Span(E?).  (24)
L0 (V;)T

That is

V¢ € Span(Ep), (25)

33/76



where

L 0 - 0
—I I 0
Ep = k Lk Ee

~I, 0 I .
., 0 0 0 0 (26)
Iy, —E;, E; 0 0

_ |, —E, 0 E; 0
I, —E, 0 0 Z]
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EY is obtained from E, by deleting the last column, and
define

L, 0 O 0 --- 0

I, -E, Eb 0 --- 0
Eg = I, —-E, 0 E; --- 0

L —E 0 0 - E

Then we have
Span(Ep) = Span(E}).

Moreover, it is easy to see that the columns of EY are lin-
early independent.
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= Potential Subspace

The subspace of potential games is

Gp = Span(Ep), (27)

which has Col(E?) as its basis.

According to the construction of EY it is clear that

Corollary 3.8

The dimension of the subspace of potential games of
Gluiky,- k) 1

dim(gp):kJrzn:g—l. (28)

=1
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IV. Decomposition of Finite Games

iz Non-strategic Games

Definition 4.1

Let G, G € Gjuy,. 1) G and G are said to be strategically
equivalent, ifforanyi € N,anyx;, y; € S;,andany x € S,

(where =" =[], S;), we have

ci(xi,x_i) — ci(yi,x_i) = 6i(x,~,x_i) — Z‘i(yi,x_i), i=1,---,n
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Lemma 4.2

Two games G, G € Ginia - &, @re strategically equivalent, if
and only if for each x~ € S~ there exists d;(x) such that

ci(xi, x7) = ¢i(xi, x7) = di(x7Y),

V)C,' € S,‘, Vx’i € Sii, = 1, R (B (30)

v
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Theorem 4.3
G and G are strategically equivalent if and only if

(Vé — Vg)T € Span (By) ,

where

(31)
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Definition 4.4

The subspace
N := Span(By)

is called the non-strategic subspace.

Corollary 4.5
The dimension of NV is

dim (V) =) (33)
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Define

L, E;, 0 0 --- 0]
I, 0 Eb 0 --- 0

Ep:= |k 0 0 E --- 0], (34)
L 0 0 0 - E,|

Comparing (34) with (26), it is ready to verify that

Gp = Span (Ep) = Span (Ep) . (35)
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Deleting the last column of Ep, (equivalently, replacing the
E, in Ep by E?), the remaining matrix is denoted as

L, E£ 0 0 --- O
I, 0 E, O 0
_Ik 0O 0 O EO_

Then it is clear that Col (E?) is a basis of Gp.
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Observing (34) again, it follows immediately that

Corollary 4.6
The subspace N is a linear subspace of G». That is,

N C Gp.
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iz Orthogonal Decomposition

Theorem 4.7
(Candogan et al, 2011)

Harmonic  games

—_——
O] =. P @ N & H. (37)

Potential ~ games
v

@® O. Candogan, |. Menache, A. Ozdaglar, P.A. Parrilo,
Flows and decompositions of games: Harmonic and
potential games, Mathematcs of Operations Research,
Vol. 36, No. 3, 474-503, 2011.
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== Pure Potential Games P
Using (34)-(35), we have

Gr = Span(Ep) _

I, —LE\ET E, 0 0 --- 0
kq 1
L—L1EEl 0 E, 0 -+ 0 s
— Span |1k — k—3E3E3T 0O 0 E; --- 0 (38)
I — tEnE,{ 0 0 0 - E,]
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I — %ElEi
Bp = = k_:zEZE2 € Mukxk. (39)
I — kiEET
Then we have

P =V = Span (Bp) . (40)
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Since dim(P) = k — 1, to find the basis of P one column of
V needs to be removed. Note that

(Ik — LEET ) 1
— (Ik[l,[—l]lk[l,i—l]) |:<Ik’. - kil-lkiin) lk,-]

(Ik[iJrl,n] lk[i+l,n] )
=0, i=1,---,n

It follows that
BPlnk — 0
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Deleting any one column of Bp, say, the last column, and
denoting the remaining matrix by BY, then we know that

Theorem 4.8

P = Span (Bp) = Span (B}) ,

where B! is a basis of P.
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= Pure Harmonic Games H
we can construct a set of vectors, which are in Gz as

(0, = 08) (g, — 62)0 -+ o
— (08, = 08) (0, — 620, -~ Op,
0(—2)k

il 7£ 17 i2 7£ 1

J1 o=
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(0%, = 0)0%, (55, — 0 )0, -+ - O,
O (O, = 05) (O, — 0)0, -~ G,
— (0,0, — 002 ) (O, — 0 )0 -+ O,
00,3y
(in,02) # 13583 # 1

Jz =
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(0, = )0k, 08, 0, -~
O, (9, — 0) 0O, -+
0 (G — G )0 -+

i1 Sl 13 Slg
5k15k25k35k4

1

(lla

5]:)1—1 (6]1:1 - 5;{);)
5]1n71 <5]1n _ 6;(’:1)
0, (0, = 0¢.)

(G, — 07 )(%, — o)
__(6]11 5]12 to 51,, 5;('1 511(22

670, — o)

Y 1)7é1n lvln#l

/
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Define
BH = [JhJZ;"' 7Jn_1]. (41)

Then we can show By is the basis of #:

Theorem 4.9
By has full column rank and

H = Span (By) . (42)
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Theorem 4.10

G e H, iff
°
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== Nash Equilibrium of Gy

Definition 4.11

Let G € Gy, i) @Nd s* = (s7,55, -+, 5;) a Nash equilib-
rium of G. s* is called a flat Nash equilibrium, if

C,‘(ST,SS,"' ,S:) — Ci(STaS;a"' 3 Siy ,S:),

\V/S,‘ES,'; lzl,,l’l

A flat Nash equilibrium is called a zero Nash equilibrium if

*

* * .
ci(sy,s5, -+ ,80) =0, i=1,--- n
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Example 4.12

Consider G € Gpy, - Assume (s7,s3) is a flat Nash equi-
librium, then the payoff bi-matrix is as Table 3:

Table 3: Flat Nash Equilibrium

P\P, 1 2 & | e ks
1 (%, %) | (%, %) | ==+ | (a,%x) | - | (X,X)
2 (3, %) | (%, %) |-+ | (a,%x) |- | (X,X)
[ GGB) [ () [ | (@b) |- | (.0)
k.l (x, %) | (x,x) (a, %) (%, %)

Asa=0b=0, (s}, s}) is a zero Nash equilibrium.
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i Nash Equilibriums of Gy = H & N

Theorem 4.13
Q If G € N, then every strategy profile is a flat Nash
equilibrium;
Q If G € H and s* is a Nash equilibrium, then s* is a zero
Nash equilibrium;

Q If G € Gy and s* is a Nash equilibrium, then s* is a flat
Nash equilibrium.

v
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i Networked Evolutionary Game (NEG)

Definition 5.1

A networked evolutionary game, denoted by

((N,E),G,II), consists of

(i) a network graph (N, E);

(if) a fundamental network game (FNG), G, such that if
(i,j) € E, then i and j play FNG with strategies x;(¢)
and x;(z) respectively;

(iii) a local information based strategy updating rule
(SUR).

v
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i Network Graph: (N, E)

Definition 5.2
Q v, E)is a graph, where N is the set of nodes and E C N xN
is the set of edges.
Q U,(i) = {j|there is a path connecting i, j with length < d}
Q Uo()) :={i}; UI(i)) =U(i); Uali) C Up(i), a <B.
Q If (i,j) € E implies (j,i) € E the graph is undirected, other-
wise, it is directed.

Definition 5.3
A network is homogeneous, if each node has the same degree
(for undirected graph) / in-degree and out-degree (for directed

graph).

58 /76



iz Fundamental Network Game: G
Definition 5.4

A normal game with two players is called a fundamental
network game (FNG), if

S1 252 3:S0:{1,2,--' ,k}

iz Qverall Payoff
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i Strategy Updating Rule: 11

Definition 5.5

A strategy updating rule (SUR) for an NEG, denoted by
I1, is a set of mappings:

xi(t+1) =g (x(t),¢(r) |j € UG)), t>0, i€N. (46)

Remark 5.6

@ ¢ could be a probabilistic mapping (i.e., a mixed strat-
egy is used);

© When the network is homogeneous, g;, i € N, are the
same.
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ir Strategy Profile Dynamics
Since ¢;(r) depends on x(r), ¢ € U(j), (46) can be ex-
pressed as

x(t+ 1) =f (x()|j € Ua(i)), t>0, ieN. (47)

Now (47) is a standard k-valued logical dynamic system,
its profile dynamics can be expressed as

xi(t+ 1) =fi(xi (1), -+, x4(2))
: (48)

xn(t+ 1) :fn(xl(t)7 U 7xn(t))'

@ D. Cheng, F. He, H. Qi, T. Xu. Modeling, analy-
sis and control of networked evolutionary games,
IEEE Trans. Aut. Contr, (in print), On line:
DOI:10.1109/TAC.2015.2404471.
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=z Potential NEG

Theorem 5.7

Consider an NEG, ((N,E),G,1I). If the fundamental net-
work game G is potential, then the NEG is also potential.
Moreover, the potential P of the NEG is:

=Y Pi(s;s). (49)

(ij)EE

V.
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Example 5.8

Consider an NEG ((N, E), G, 11), where the network graph
is described as in Fig. 5.

1 2

3 5

Figure 5: Network Graph
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Assume:
@ G: the prisoners dilemma with R = —1, § = —10,
T=0,P=-5.

@ [I: MBRA (Potential = Pure Nash Equalibrium)

(-1 0 - 0]
0 —1 -~ 0
v = € Mgxso-
0 0
0 o 1)
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Example 5.8 (cont’d)
It is easy to check that

Ve= [-1 -1 —10
—1 -1 —10
0 0 -5
0 0 -5
Vi= [-1 -1 —10
0 0 -5
~1 -1 —10

0 0 =5

—10

—10
=5
-5

—10
-5
—10
-5

—1
—1

_3].

65/76



Example 5.8 (cont’d)

Ve= [-1 -1 —10 —10 0 0 -5 -5
1 -1 —-10 =10 0 0 —5 =5
~1 -1 —-10 =10 0 0 —5 -5
~1 -1 —10 =10 0 0 —5 —5].

Vi= [-4 —-13 0 -5 —13 -22 -5 —10
13 —22 -5 —10 —22 —-31 —10 -15
13 —22 -5 —10 —22 -31 —-10 -15
—22 —31 —-10 —15 —31 —40 —15 —20].
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Example 5.8 (cont’d)

Ve=[-1 0 =10 =5 —1 0 —10 -5
1 0 —-10 =5 —1 0 —10 -5
1 0 —10 =5 —1 0 —10 -5

-1 0 —-10 =5 -1 0 —-10 -5].
It is easy check that the networked game is potential.
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Example 5.8 (cont’d)
Moreover,

&= [28 27 15 10 27 26 10 5

27 26 10 5 26 25 5
Using potential formula, we have

Vp= [-29 —-28 —-25 —-20 -—-28 -27
—28 =27 =20 —-15 27 =26
—28 27 =20 —-15 27 -26
-27 =26 —-15 —-10 —-26 -25

0].

—20
—15
—15
—10

15
~10
~10
—5].
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Example 5.8 (cont’d)

Calculating P separately.
First, for any (i,j) € E we have

P(x,-,xj) = Voxixj, (50)

where
Vo=(R-T,0,0,P—S)=(—-1005).

Next, we have

vz =voD!Y = v (1, ® 11)
= [-1 -1 -1 =1 -1 -1 -1 -1

O 0 0 0 0 0 0 0
O 0 0 0 0 0 0 0
5.5 5 5 5 5 5 5.
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Example 5.8 (cont’d)

Similarly, we can figure out all V}/ as

Vl 3 _v, D[z 2]1)[8,2]7 Vl 4 — v, D[z 4]D£16 2],
Vls_VD[zs] V,2,3—VD[22]D£84],
V,%’4 — v, D[z 2]D[4 Z]D[l6 2]’ st — v, D[z 2]D£4 4]

V13J74 _v D][f‘ Z]D[16 2] V3 S _ VOD[4 2]D£8 2]7

5 8,2
vi® = VoDP.
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Example 5.8 (cont’d)

Vo= VM4 V244 Y3 s
= [—4 -3 0 5 -3 -2 5 10
-3 -2 5 10 -2 —1 10 15
-3 -2 5 10 -2 -1 10 15
-2 —1 10 15 -1 O 15 20].

Comparing this result with the above Vp, one sees easily
that

P(x) = P(x) + 25.
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VI. Applications

1> Consensus of MAS

@ Network graph: (N,E(¢)): N = {1,2,--- ,n} with vary-
ing topology: E(r).
@ Model of MAS:

ai(t+1) :ﬁ(aj(t)UE U<l)>7 lzla ) 1. (51)
@ Set of Strategies:

ae A CR, i=1,---,n.

¥ J.R. Marden, G. Arslan, J. S. Shamma, Cooperative
control and potential games, IEEE Trans. Sys., Man,
Cybernetcs, Part B, Vol. 39, No. 6, 1393-1407, 20009.
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wr Distributed Coverage of Graphs

@ Unknown connected graph G = (V,E).
@ Mobile agents N = {1,2,--- ,n} (initially arbitrarily de-
ployed on G).
@ Agent g; can cover U'(z) := Uy (a;i(t)),i=1,--- ,n.
Purpose: max, J._, U".

¥ A.Y. Yazicioglu, M. Egerstedt, J.S. Shamma, A game
theoretic approach to distributed coverage of graphs by
heterogeneous mobile agents, Est. Contr. Netw. Sys.,
Vol. 4, 309-315, 2013.

® M. Zhu, S. Martinez, Distributed coverage games for
energy-aware mobile sensor networks, SIAM J. Cont.
Opt., Vol. 51, No. 1, 1-27, 2013.
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i Congestion Games

Problem: Player 1 want to go from A to D, player 2 want to
go from B to C:

A B

3 2

C D
4

® D. Monderer, L.S. Shapley, Potential Games, Games &
Economic Behavior, Vol. 14, 124-143, 1996.

® X. Wang, N. Xiao, et al, Distributed consensus in
noncooperative congestion games: an application to
road pricing, Proc. 10th IEEE Int. Conf. Contr. Aut.,
Hangzhou, China, 1668-1673, 2013.
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V. Conclusion

@ Formulas for verifying and calculating potential func-
tion are obtained.

@ Vector space structure of finite non-cooperative games
is introduced. lts decomposition is investigated.

Harmonic ~ games

——
g["l§kl7"'7kn] = P EB N EB H .
~— —

Potential ~ games

@ The Nash equilibriums of Gy = H ® N are explored.
@ The strategy profile dynamics of an NEG is derived.
Properties of certain (potential) NEGs are studied.

@ Three applications for potential NEGs are introduced.

Last Comments:
Game-based Control or Control Oriented Game could
be a challenging new direction for Control Community. o
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Thank you for your attention!

Question?
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