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I. An Introduction to Game Theory
+ Game Theory

ããã 1: John von Neumann

J. von Neumann and O. Morgenstern, Theory of
Games and Economic Behavior, Princeton University
Press, Princeton, New Jersey, 1944.

3 / 84



+ Non-Cooperative Game

(Winner of Nobel Prize in Economics 1994)

ããã 2: John Forbes Nash Jr.

J. Nash, Non-cooperative game, The Annals of Math-
ematics, Vol. 54, No. 2, 286-295, 1951.
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+ Finite (Non-Cooperative) Game

Definition 1.1
A finite game G = (N,S, c):

(i) Player: N = {1, 2, · · · , n}.

(ii) Strategy: Si = Dki , i = 1, · · · , n,

where
Dk := {1, 2, · · · , k}.

Profile: S =

n∏
i=1

Si.

(iii) Payoff (utility) function:

cj : S → R, j = 1, · · · , n. (1)
c := {c1, · · · , cn} .
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+ Nash Equilibrium

Definition 1.2
In a normal game G, a profile

s = (x∗1, · · · , x∗n) ∈ S

is a Nash equilibrium if

cj(x∗1, · · · , , x∗j , · · · , x∗n) ≥ cj(x∗1, · · · , xj, · · · , x∗n)
j = 1, · · · , n. (2)

No player has anything to gain by unilateral change of
strategy if the strategies of the others remain unchanged.
Hence, they have no incentive to change.
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+ Nash Equilibrium

Example 1.3
Consider a game G with two players: P1 and P2:

Strategies of P1: D2 = {1, 2};
Strategies of P2: D3 = {1, 2, 3}.

LLL 1: Payoff bi-matrix

P1\P2 1 2 3
1 2, 1 3, 2 6, 1
2 1, 6 2, 3 5, 5

(1, 2) is a Nash equilibrium.
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+ Mixed Strategies

Definition 1.4
Assume the set of strategies for Player i is

Si = {1, · · · , ki}.

Then Player i may take j ∈ Si with probability rj ≥ 0, j =
1, · · · , ki, where

ki∑
j=1

rj = 1.

Such a strategy is called a mixed strategy. Denote by

xi = (r1, r2, · · · , rki)
T ∈ Si.
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+ Notations

Pure Strategy:

∆k; = {δi
k | i = 1, 2, · · · , k}

Logical Matrix:

Lk×n; = {[δi1
k , δ

i2
k , · · · , δ

in
k ] = δk[i1, i2, · · · , in]}

Mixed Strategy:

Υk := {(r1, r2, · · · , rk)
T
∣∣ ri ≥ 0,

k∑
i=1

ri = 1}.

Probabilistic Matrix:

Υk×n :=
{

M ∈Mk×n

∣∣ Col(M) ⊂ Υk
}
.

9 / 84



+ Existence of Nash Equilibrium

Theorem 1.5
(Nash 1950) In the n-player normal game, G = (N, S, c), if
|N| and |Si|, i = 1, · · · , n are finite, then there exists at least
one Nash equilibrium, possibly involving mixed strategies.

Example 1.6
Consider Rock-Paper-Scissors, where

N = {P1, P2};
Si = {R, S,P}, i = 1, 2;
Payoff: payoffs are described by the following payoff
bi-matrix.
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Example 1.6(cont’d)

LLL 2: Payoff Bi-matrix of R-P-S

P1\P2 R = 1 S = 2 C = 3
R = 1 (0, 0) (1, −1) (−1, 1)
S = 2 (−1, 1) (0, 0) (1, −1)
C = 3 (1, −1) (−1, 1) (0, 0)

It is easy to check that
there is no pure Nash equilibrium;
There is a mixed Nash equilibrium

si = (1/3, 1/3, 1/3), i = 1, 2.
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II. Networked Evolutionary Game

+ Evolutionary Game

Strategy Profile Dynamics (as G = (N, S, c) is repeated):

xi(t + 1) = fi(xj(s), cj(s)|j = 1, · · · , n; s = 0, 1, · · · , t)
i = 1, · · · , n,

(3)

where xi ∈ Si, i = 1, · · · , n.

Markovian Strategy Profile Dynamics:

xi(t + 1) = fi(xj(t), cj(t)|j = 1, · · · , n)
i = 1, · · · , n, (4)

where xi ∈ Si, i = 1, · · · , n.
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+ Networked Evolutionary Game (NEG)

Definition 2.1
A networked evolutionary game, denoted by ((N,E),G,Π),
consists of
(i) a network graph (N,E);

(ii) a fundamental network game (FNG), G, such that if
(i, j) ∈ E, then i and j play FNG with strategies xi(t)
and xj(t) respectively;

(iii) a local information based strategy updating rule
(SUR).

D. Cheng, F. He, H. Qi, T. Xu, Modeling, analysis and
control of networked evolutionary games, IEEE Trans.
Aut. Contr Vol. 60, No. 9, 2402-2415, 2015.
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+ Network Graph: (N,E)

Definition 2.2
1 (N,E) is a graph, where N is the set of nodes and E ⊂ N×N

is the set of edges.
2 Ud(i) = {j | there is a path connecting i, j with length ≤ d}
3 U0(i) := {i}; U1(i) = U(i); Uα(i) ⊂ Uβ(i), α ≤ β.
4 If (i, j) ∈ E implies (j, i) ∈ E the graph is undirected, other-

wise, it is directed.

Definition 2.3
A network is homogeneous, if each node has the same
degree (for undirected graph) / in-degree and out-degree
(for directed graph).
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+ Fundamental Network Game: G

Definition 2.4
(i) A normal game with two players is called a fundamen-

tal network game (FNG), if

S1 = S2 := S0 = {1, 2, · · · , k}.

(ii) An FNG is symmetric, that is,

c1(x, y) = c2(y, x), ∀x, y ∈ S0.

+ Overall Payoff

ci(t) =
∑

j∈U(i)\i

cij(t), i ∈ N. (5)
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+ Strategy Updating Rule

:

Definition 2.5
A strategy updating rule (SUR) for an NEG, denoted by Π,
is a set of mappings:

xi(t + 1) = gi
(
xj(t), cj(t)

∣∣ j ∈ U(i)
)
, t ≥ 0, i ∈ N. (6)

Remark 2.6
1 gi could be a probabilistic mapping (i.e., a mixed strat-

egy is used);
2 When the network is homogeneous, gi, i ∈ N, are the

same.
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+ Some SURs

(1) Π− I: Unconditional Imitation with fixed priority (UI-1).

j∗ = argmaxj∈U(i) cj(x(t)), (7)

⇒ xi(t + 1) = xj∗(t). (8)

Optimal payment neighbors are not unique:

argmaxj∈U(i) cj(x(t)) := {j∗1, · · · , j∗r},

set priority:

j∗ = min{µ|µ ∈ argmaxj∈U(i) cj(x(t))}. (9)

⇒ Deterministic k-valued dynamics.
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+ Some SURs

(Cont’d)

(2) Π − II: Unconditional Imitation with equal probability
for best strategies (UI-2).

xi(t + 1) = xj∗µ(t), with pi
µ =

1
r
, µ = 1, · · · , r. (10)

⇒ Probabilistic k-valued dynamics.

(3) Π− III: Simplified Fermi Rule (FR).
Randomly (uniformly) choose a neighborhood j ∈ U(i).

xi(t + 1) =

{
xj(t), cj(x(t)) > ci(x(t))
xi(t), otherwise.

(11)

⇒ Probabilistic k-valued dynamics.
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+ Some SURs

(Cont’d)

(4) Π− IV: Myopic Best Response Adjustment (MBRA).

xi(t + 1) ∈ BRi (x−i(t)) . (12)

When |BRi| > 1:

Fixed Priority:
⇒ Deterministic k-valued dynamics.
Random Choice:
⇒ Probabilistic k-valued dynamics.
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III. STP and its Applications to Finite
Games

+ Semi-tensor Product (STP) of Matrices

Definition 3.8
Let A ∈Mm×n and B ∈Mp×q. Denote

t := lcm(n, p).

Then the right semi-tensor product of A and B is defined
as

A n B :=
(
It/n ⊗ A

) (
It/p ⊗ B

)
∈M(mt/n)×(qt/p). (13)
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+ Application of STP

Analysis and control of logical systems;
Finite game theory;
Fuzzy system;
Graph theory and formation control;
Finite Automata;
Coding;
Engineering Systems: (i) Power systems, (ii) Mix-power
vehicle, etc.

Authors of STP papers from:
Over 40 Universities from China including Tsinghua
Univ., Pekin Univ., Southeast Univ., Central South Univ.
Nankai Univ, Tongji Univ. Harbin Institute of Technol-
ogy, South China Univ. of Technology, etc.
Countries: Italy, Israel, Japan, USA, UK, German, Aus-
tralian, Russian, Sweden, South African, Singapore,
India, Iran, Saudi Arabia, etc.
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+ Vector Form of Strategies

Si = Dk = {1, 2, · · · , k}
⇓

i ∼ δi
k

⇓
Si = ∆k = {δ1

k , δ
2
k , · · · , δk

k},

where δi
k is the i-th column of Ik.

The set of mixed strategies

S̄i :=

{
(r1, · · · , rk)

T | rj ≥ 0,
k∑

j=1

rj = 1

}
,

where
(r1, · · · , rk)

T ∈ Υk.
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+ Strategy Profile Dynamics (SPD)

As long as the network graph (N,E) and the fundamental
network game G are fixed: SUR⇒ SPD:

xi(t + 1) = gi
(
xj(t), cj(t)

∣∣j ∈ U(i)
)
, t ≥ 0, i ∈ N.

Since cj(t) depends on xk(t), k ∈ U(j), it follows that

xi(t + 1) = fi(xj(t)
∣∣j ∈ U2(i)), i ∈ N. (14)

xi(t + 1) = Mi nj∈U2(i) xj(t) = M̃i nn
j=1 xj(t), i ∈ N. (15)

Then we have the strategy updating dynamics as

x(t + 1) = Lx(t), (16)

where L = M̃1 ∗ M̃2 ∗ · · · ∗ M̃n.
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+ An Example

Example 3.12
Consider ((N,E),G,Π), where
Fundamental Network Game G is Rock-Scissors-Paper.
The payoff bi-matrix is shown in Table 2.
Network Graph: R3

1 2 3

ããã 3: Network Graph R3

Strategy Updating Rule:
Π− I: (unconditional imitation with fixed priority)
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Example 3.12 (cont’d)

LLL 3: Payoffs→ Dynamics

Profile 111 112 113 121 · · · 333
C1 0 0 0 1 · · · 0
C2 0 1 -1 -2 · · · 0
C3 0 -1 1 1 · · · 0
f1 1 1 1 1 · · · 3
f2 1 1 3 1 · · · 3
f3 1 1 3 1 · · · 3
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Example 3.12 (cont’d)
Identifying 1 ∼ δ1

3, 2 ∼ δ2
3, 3 ∼ δ3

3, we have the vector form
of each fi as

xi(t + 1) = fi(x1(t), x2(t), x3(t)) = Mix1(t)x2(t)x3(t), i = 1, 2, 3,
(17)

where

M1 = δ3[1 1 1 1 1 1 3 3 3 1 1 1 2 2 2 2 2 2 3 3 3 2 2 2 3 3 3];
M2 = δ3[1 1 3 1 1 1 3 2 3 1 1 3 1 2 2 2 2 2 3 3 3 1 2 2 3 2 3];
M3 = δ3[1 1 3 1 2 2 3 2 3 1 1 3 1 2 2 3 2 3 1 1 3 1 2 2 3 2 3].
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Example 3.12 (cont’d)
Finally, we have the Strategy Profile Dynamics (SPD) as

x(t + 1) = Lx(t), (18)

where

L = M1 ∗M2 ∗M3 = δ27[1 1 9 1 · · · , 27].
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IV. Potential Game

+ What Is a Potential Game?

Definition 4.1
Consider a finite game G = (N, S,C). G is a potential game
if there exists a function P : S → R, called the potential
function, such that for every i ∈ N and for every s−i ∈ S−i

and ∀x, y ∈ Si

ci(x, s−i)− ci(y, s−i) = P(x, s−i)− P(y, s−i), i = 1, · · · , n.
(19)

D. Monderer, L.S. Shapley, Potential Games Games
and Economic Behavior, Vol. 14, 124-143, 1996.
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+ Fundamental Properties

Theorem 4.2
If G is a potential game, then the potential function P is
unique up to a constant number. Precisely if P1 and P2 are
two potential functions, then P1 − P2 = c0 ∈ R.

Theorem 4.3
Every finite potential game possesses a pure Nash equi-
librium. Sequential or cascading MBRA leads to a Nash
equilibrium.

It becomes the kernel of Game theoretic control (Marden
2009).

J.R. Marden, G. Arslan, J. S. Shamma, Cooperative
control and potential games, IEEE Trans. Sys., Man,
Cybernetcs, Part B, Vol. 39, No. 6, 1393-1407, 2009.
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+ Verify Potential Game

Shapley (96) : O(k4) [6]; Hofbauer (02) : O(k3) [7];
Hilo (11) : O(k2) [8]; Cheng (14) : min [9].

Hilo: “It is not easy, however, to verify whether a given
game is a potential game.”

D. Monderer, L.S. Shapley, Potential games, Games
Econ. Theory, 97, 81-108, 1996.

J. Hofbauer, G. Sorger, A differential game approach
to evolutionary equilibrium selection, Int. Game Theory
Rev. 4, 17-31, 2002.

Y. Hino, An improved algorithm for detecting potential
games, Int. J. Game Theory, 40, 199-205, 2011.

D. Cheng, On finite potential games, Automatica, Vol.
50, No. 7, 1793-1801, 2014.
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Lemma 4.4
G is a potential game if and only if there exist
di(x1, · · · , x̂i, · · · , xn), which is independent of xi, such that

ci(x1, · · · , xn) = P(x1, · · · , xn)
+di(x1, · · · , x̂i, · · · , xn), i = 1, · · · , n, (20)

where P is the potential function.

Structure Vector Express:

ci(x1, · · · , xn) := Vc
i nn

j=1 xj

di(x1, · · · , x̂i, · · · , xn) := Vd
i nj6=i xj, i = 1, · · · , n,

P(x1, · · · , xn) := VP nn
j=1 xj.
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Construct:

Ei = Iki−1 ⊗ 1k ⊗ Ikn−i

∈Mkn×kn−1 , i = 1, · · · , n. (21)

ξi :=
(
Vd

i

)T ∈ Rkn−1
, i = 1, · · · , n. (22)

bi := (Vc
i − Vc

1)T ∈ Rkn
, i = 2, · · · , n. (23)
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+ Potential Equation

Then (37) can be expressed as a linear system:

Eξ = b, (24)

where

E =


−E1 E2 0 · · · 0
−E1 0 E3 · · · 0

... . . .
−E1 0 0 · · · En

 ; ξ =


ξ1

ξ2
...
ξn

 ; b =


b2

b3
...

bn

 .
(25)

(41) is called the potential equation and E is called the po-
tential matrix.
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+ Main Result

Theorem 4.5
A finite game G is potential if and only if the potential equa-
tion has solution. Moreover, the potential P can be calcu-
lated by

VP = Vc
1 − Vd

1 M1 = Vc
1 − ξT

1

(
1T

k ⊗ Ik
)
. (26)
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Example 4.6
Consider a prisoner’s dilemma with the payoff bi-matrix as
in Table 4.

LLL 4: Payoff Bi-matrix of Prisoner’s Dilemma

P1\P2 1 2
1 (R, R) (S, T)
2 (T, S) (P, P)

1: confess; 2: not confess

R = 5; S = 0; T = 10; P = 1.
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Example 4.6 (cont’d)
From Table 4

Vc
1 = (R, S,T,P)

Vc
2 = (R,T, S,P).

Assume Vd
1 = (a, b) and Vd

2 = (c, d). It is easy to calculate
that

E1 =
(

D[2,2]
f

)T
= δ2[1, 2, 1, 2]T ,

E2 =
(

D[2,2]
r

)T
= δ2[1, 1, 2, 2]T .

b2 = (Vc
2 − Vc

1)T = (0,T − S, S− T, 0)T .
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Example 4.6 (cont’d)
Then the potential equation (41) becomes

−1 0 1 0
0 −1 1 0
−1 0 0 1
0 −1 0 1




a
b
c
d

 =


0

T − S
S− T

0

 . (27)
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Example 4.6 (cont’d)
It is easy to solve it out as{

a = c = T − c0

b = d = S− c0

where c0 ∈ R is an arbitrary number. We conclude that the
general Prisoner’s Dilemma is a potential game.
Using (26), the potential can be obtained as

VP = Vc
1 − Vd

1 D[2,2]
f

= (R− T, 0, 0,P− S) + c0(1, 1, 1, 1).
(28)

[Monderer, Shapley, 1996] considered the Prisoner’s
Dilemma with R = 1, S = 9, T = 0, P = 6, and VP =
(4, 3, 3, 0). It is a special case of (28) with c0 = 3.
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+ Potential NEG

Theorem 4.7
Consider an NEG, ((N,E),G,Π). If the fundamental net-
work game G is potential, then the NEG is also potential.
Moreover, the potential P of the NEG is:

P(s) :=
∑
(i,j)∈E

Pi,j(si, sj). (29)
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Example 4.8
Consider an NEG ((N,E),G,Π), where the network graph
is described as in Fig. 4.

1 2

3

4

5

ããã 4: Network Graph
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Example 4.8 (cont’d)
Assume:

G: the prisoner’s dilemma with R = −1, S = −10,
T = 0, P = −5.
Π: MBRA (Potential⇒ Pure Nash Equilibrium)

E =


−1 0 · · · 0
0 −1 · · · 0

. . .
0 0 · · · 1
0 0 · · · 1

 ∈M128×80.
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Example 4.8 (cont’d)
It is easy to check that

Vc
1 = [−1 −1 −10 −10 −1 −1 −10 −10

−1 −1 −10 −10 −1 −1 −10 −10
0 0 −5 −5 0 0 −5 −5
0 0 −5 −5 0 0 −5 5].

Vc
2 = [−1 −1 −10 −10 −1 −1 −10 −10

0 0 −5 −5 0 0 −5 −5
−1 −1 −10 −10 −1 −1 −10 −10
0 0 −5 −5 0 0 −5 −5].
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Example 4.8 (cont’d)

Vc
3 = [−1 −1 −10 −10 0 0 −5 −5

−1 −1 −10 −10 0 0 −5 −5
−1 −1 −10 −10 0 0 −5 −5
−1 −1 −10 −10 0 0 −5 −5].

Vc
4 = [−4 −13 0 −5 −13 −22 −5 −10

−13 −22 −5 −10 −22 −31 −10 −15
−13 −22 −5 −10 −22 −31 −10 −15
−22 −31 −10 −15 −31 −40 −15 −20].
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Example 4.8 (cont’d)

Vc
5 = [−1 0 −10 −5 −1 0 −10 −5

−1 0 −10 −5 −1 0 −10 −5
−1 0 −10 −5 −1 0 −10 −5
−1 0 −10 −5 −1 0 −10 −5].

Using Theorem 3.5, we can check that the networked
game is potential.
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Example 4.8 (cont’d)
Moreover,

ξ1 = [28 27 15 10 27 26 10 5
27 26 10 5 26 25 5 0].

Using (29), we have

VP = [−29 −28 −25 −20 −28 −27 −20 −15
−28 −27 −20 −15 −27 −26 −15 −10
−28 −27 −20 −15 −27 −26 −15 −10
−27 −26 −15 −10 −26 −25 −10 −5].
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Example 4.8 (cont’d)
Calculating P separately.
First, for any (i, j) ∈ E we have

P(xi, xj) = V0xixj, (30)

where
V0 = (R− T, 0, 0,P− S) = (−1 0 0 5).

Next, we have

V1,2
P = V0D[4,8]

r = V0 (I4 ⊗ 1T
8 )

= [−1 −1 −1 −1 −1 −1 −1 −1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
5 5 5 5 5 5 5 5].
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Example 4.8 (cont’d)

Similarly, we can figure out all V i,j
P as

V1,3
P = V0D[2,2]

r D[8,2]
r , V1,4

P = V0D[2,4]
r D[16,2]

r ,

V1,5
P = V0D[2,8]

r , V2,3
P = V0D[2,2]

f D[8,4]
r ,

V2,4
P = V0D[2,2]

f D[4,2]
r D[16,2]

r , V2,5
P = V0D[2,2]

f D[4,4]
r

V3,4
P = V0D[4,2]

f D[16,2]
r , V3,5

P = V0D[4,2]
f D[8,2]

r ,

V4,5
P = V0D[8,2]

f .
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Example 4.8 (cont’d)

VP̃ = V1,4
P + V2,4

P + V3,4
P + V4,5

P
= [−4 −3 0 5 −3 −2 5 10
−3 −2 5 10 −2 −1 10 15
−3 −2 5 10 −2 −1 10 15
−2 −1 10 15 −1 0 15 20].

Comparing this result with the above VP, one sees easily
that

P̃(x) = P(x) + 25.
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+ Weighted Potential Game

Definition 4.9
Consider a finite game G = (N, S,C). G is a weighted po-
tential game if there exist a function P : S → R, called
the potential function, and a set of weights wi > 0, i =
1, 2, · · · , n, such that for every i ∈ N and for every s−i ∈ S−i

and ∀x, y ∈ Si

ci(x, s−i)− ci(y, s−i) = wi[P(x, s−i)− P(y, s−i)], i = 1, · · · , n.
(31)
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+ Calculating Weights

Weighted Potential Equation

Ewξ = B, (32)

where

Ew =


−w2E1 w1E2 0 · · · 0
−w3E1 0 w1E3 · · · 0

...
...

...
−wnE1 0 0 · · · w1En

 ; (33)

B =


(w1V2 − w2V1)

T

(w1V3 − w3V1)
T

...
(w1Vn − wnV1)

T

 ; (34)
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Weight Equation

[
(In−1 ⊗ E1) W[κ/k1,n−1]ξ1 − (In−1 ⊗ VT

1 )
]


w2

w3
...

wn



=


E2 0 · · · 0
0 E3 · · · 0

. . .
0 0 · · · En



ξ2

ξ3
...
ξn

−


VT
2

VT
3
...

VT
n

 .
(35)
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+ Algorithm

:
Assume wi = 1, ∀i;

(1)
WP-Equation→ ξ;

(2)
W-Equation→ {wi};

back to (1).

D. Cheng, Z. Ji, Weighted and Near Weighted Poten-
tial Games with Application to Game Theoretic Control,
(submitted)
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IV. Decomposition of Finite Games
+ Vector Space Structure of Finite Games

Denote by G[n;k1,··· ,kn] the set of finite games with |N| = n,
|Si| = ki, i = 1, · · · , n. Then all games in G[n;k1,··· ,kn] are
distinct by their payoffs:

ci(x1, · · · , xn) = Vc
i nn

j=1 xj, i = 1, · · · , n,

where Vc
i ∈ Rk ( k =

∏n
i=1 ki) is the structure vector of ci.

Set
VG := [Vc

1,V
c
2, · · · ,Vc

n] ∈ Rnk.

Then each VG corresponds to a G ∈ G[n;k1,··· ,kn]. Hence
, G[n;k1,··· ,kn] has a natural vector space structure as

G[n;k1,··· ,kn] ' Rnk.
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+ Subspaces

Definition 4.1
Some subspaces of G[n;k1,··· ,kn] are defined as:
(i) Potential Games

(ii) Nonstrategic Games G,∈ G[n;k1,··· ,kn] is nonstrategic if

ci(xi, s−i) = ci(yi, s−i), ∀xi, yi ∈ Si, i = 1, · · · , n. (36)

(iii) G ∈ G[n;k1,··· ,kn] is harmonic if

n∑
i=1

(
ci(s)− 1

ki

∑
xi∈Si

ci(xi, s−i)

)
= 0. (37)
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Definition 4.1(cont’d)
(iv) G is pure harmonic, if

n∑
i=1

ci(s) = 0, s ∈ S; (38)

and∑
x∈Si

ci(x, y) = 0, ∀y ∈ S−i :=
∏
j6=i

Sj; i = 1, · · · , n. (39)

Example 4.2
Rock-Paper-Scissors is a pure harmonic game.
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+ Potential-Based Decomposition

Theorem 4.3

G[n;k1,··· ,kn] = ︸ ︷︷ ︸
Potential games

P ⊕
Harmonic games︷ ︸︸ ︷
N ⊕ H . (40)

where P, N , H are pure potential games, nonstrategic
games, and pure harmonic games respectively.

Candogan et al[13]: Algebraic Topology, Graphic De-
composition, Weighted Orthogonality
Cheng et al[14]: STP Approach, Euclidian Orthogo-
nality.
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[13] O. Candogan, I. Menache, A. Ozdaglar, P.A. Par-
rilo, Flows and decompositions of games: Harmonic
and potential games, Mathematcs of Operations Re-
search, Vol. 36, No. 3, 474-503, 2011.

[14] D. Cheng, T. Liu, K. Zhang, On decomposed sub-
spaces of finite games, IEEE Trans. Aut. Contr., Vol.
61, No. 11, 3651-3656, 2016.
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+ Symmetric-Based Decomposition

Theorem 4.4

G[n;k1,··· ,kn] = S ⊕A⊕K, (41)

where S,A,K are symmetric, skew-symmetric, and asym-
metric games respectively.

[15] Y. Hao, D. Cheng, On skew-symmetric games,
Journal of the Franklin Institute, Vol. 355, 3196-3220,
2018.
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+ Relationship Between Potential and Symmetric

Boolean + Symmetric⇒ Potential
Boolean + Potential 6⇒ Symmetric

D. Cheng, T. Liu, From Boolean game to potential
game, Automatica, Vol. 96, 51-60, 2018.
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V. Bayesian Game
+ Bayesian Game (Incomplete Information Game)

Definition 5.1
A (Finite) Static Bayesian Game G(N,T,A, c, p) consists of

(i) Players:

N = {1, 2, · · · , n}. (42)

(ii) Types:

T = {T1,T2, · · · ,Tn} , (43)

where

Ti = {t1
i , t

2
i , · · · , t

si
i }, i = 1, 2, · · · , n. (44)
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Definition 5.1(cont’d)
(iii) Profile-Actions:

A = A1 × A2 × · · · × An, (45)

where

Ai =
{

A1
i ,A

2
i , · · · ,A

ri
i

}
, i = 1, 2, · · · , n. (46)

(iv) Payoff Functions:

ci : (A1 × · · · × An)× (t1 × · · · × tn)→ R, i = 1, 2, · · · , n.
(47)

(v) Pre-assigned Distribution:

Pr(t1, t2, · · · , tn). (48)
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Then the Beliefs (&g,íä) is obtained as

pti := Pr (t−i | ti) = Pr(t1,t2,··· ,tn)
Pr(ti)

= Pr(ti,t−i)∑
t−i

Pr(ti,t−i)
. (49)

Where Pr(ti, t2, · · · , tn) is a common knowledge.

R. Gibbons, A Primer in Game Theory, Prentice, Lon-
don, 1992.

D. Cheng, C. Li, Matrix Expression of Bayesian Game,
submitted for pub.
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+ Vector Expression of Finite BG

Denote

Ai =
{
δj

ri
| 1 ≤ j ≤ ri

}
;

Ti =
{
δj

si
| 1 ≤ j ≤ si

}
, i = 1, 2, · · · , n.

ci(a1, · · · , an; t1, · · · , tn) ∈ R, aj ∈ Aj(tj), 1 ≤ i ≤ n. (50)

Denote by r =
∏n

i=1 ri, s =
∏n

i=1 si, then we have

ci : ∆rs → R, 1 ≤ i ≤ n. (51)
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Using (50), it is obvious that for each i there exists a unique
row vector Vi ∈ Rst such that

ci = Vitx, 1 ≤ i ≤ n, (52)

where x = nn
i=1xi, t = nn

i=1ti.

Remark 5.2
In fact, (52) provides a natural vector space structure for
ci(x, t) ∈ Rst, where x = a1a2 · · · an ∈ ∆r t = t1t2 · · · tn ∈ ∆s.
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+ Two kinds of Types

Definition 5.4
There are two kinds of types:
(i) Types of Nature (TN):

The types are determined by pre-assigned distribution
Pr(t1, t2, · · · , tn), which is a common knowledge.
(Each player i knows the type ti assigned to him.)

(ii) Types of Human (TH):

Player i has the right to choose ti for entering the
game.
(Then ti becomes part of strategy for player i, i =
1, 2, · · · , n.)
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+ Expected Payoff Function

Proposition 5.5
(i) TN:

The expected value of player i, using actions a =
(a1, a2, · · · , an) is

eN
i (a) := Ei(a(T)) =

∑
t∈T

ptVc
i ta, i = 1, 2, · · · , n. (53)

(ii) TH:
The expected value of player i, using actions a =
(a1, a2, · · · , an) and type tj

i is

eH
i (a, tj

i) := Ei(a(T)|ti = tj
i)

=
∑

t−i∈T−i

ptji
(t−i)Vc

i t(tj
i, t−i)a, i = 1, 2, · · · , n.

(54)
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+ Bayesian-Nash Equilibrium

Definition 5.6
(i) TN:

A profile (a∗1, a
∗
2, · · · , a∗n) is said to be a pure Bayesian-

Nash equilibrium, if for each i and any tj
i ∈ Ti the fol-

lowing inequalities hold.

EN
i (a∗(t)|ti) ≥ EH

i

(
a∗1(t1), · · · , a∗i−1(ti−1), ai, .a∗i+1(ti+1),

· · · , a∗n(tn)|ti) , ∀ti ∈ Ti; i = 1, 2, · · · , n.
(55)

(ii) TH:
A profile (a∗1(t∗1), a∗2(t∗2), · · · , a∗n(t∗n)) is said to be a pure
Bayesian-Nash equilibrium, if for each i and any t ∈ T
the following inequalities hold.

EH
i (a∗1(t∗1), a∗2(t∗2), · · · , a∗n(t∗n)) ≥ EH

i

(
a∗1(t∗1), · · · , a∗i−1(t∗i−1),

ai(ti), a∗i+1(t∗i+1), · · · , a∗n(t∗n)
)
,∀tj

i ∈ Ti, i = 1, 2, · · · , n.
(56)
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Definition 5.7
Assume the distribution f (t1, t2, · · · , tn) is a common knowl-
edge. Three conversions are defined as follows:
(i) (Harsanyi) H-Conversion: Define

cH
i (a) := Eci(a), i = 1, 2, · · · , n. (57)

(ii) (Selten) S-Conversion: Player i knows his type ti = tθi .
Define

cS
i (a) := E(ci(a)|ti = tθi ), i = 1, 2, · · · , n. (58)

(iii) (Action-Type) AT-Conversion: Player i is able to
choose ti. Define

cAC
i (ti, a) :=

[
E(ci(a)|ti = t1

i ),E(ci(a)|ti = t2
i ),

· · · ,E(ci(a)|ti = tsi
i ), ] , i = 1, 2, · · · , n.

(59)
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VI. Game Theoretic Control
+ Framework of Game Theoretic Control [14]

Potential Games

Utility Design

Learning Design

ããã 5: ’Hourglass’ Architecture of Game Theoretic Control

[14] R. Gopalakrishnan, J.R. Marden, A. Wierman, An
architectural view of game theoretic control, ACM SIG-
METRICS, Vol. 38, No. 3, 31-36, 2010.
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+ Utility (Cost Function) Design

Congestion Game

Definition 6.1
A congestion game, denoted by
C (N,M, (Ai)i∈N , (Ξj), j ∈ M), consists of

Player: N = {1, 2, · · · , n};
Facility: M = {1, 2, · · · ,m};
Facility Cost: Ξj(k), j ∈ M, (depends on number of
users k);
Strategy: Ai ⊂ 2M, Facilities used by player i, i =
1, · · · , n.
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Denote
Profile: A =

∏n
i=1Ai;

Number of Users:

rj(a) =
∣∣{i ∣∣ j ∈ ai}

∣∣ , j ∈ M. (60)

Utilities:

ci(a) =
∑
j∈ai

Ξj(rj(a)), i ∈ N. (61)

71 / 84



Theorem 6.2
A congestion game is a potential game with potential func-
tion, P : A→ R, as

P(a) =
∑

j∈∪n
i=1ai

rj(a)∑
`=1

Ξj(`)

 . (62)

D. Monderer, L. Shapley, Potential games, Game and
Economic Behavior, Vol. 14, 124-143, 1996.
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+ Semi-tensor Product Expression

Facility Const:

Ξj =
[
ξj

1, ξ
j
2, · · · , ξ

j
n

]
, j ∈ M.

Ξ := [Ξ1,Ξ2, · · · ,Ξm] ∈ Rmn. (63)

Strategy:
ai = [a1

i , · · · , am
i ], i ∈ N,

where

aj
i =

{
1, Player i uses j
0, Player i does not use j
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+ Semi-tensor Product Expression (cont’d)

Index Number:

α(a) =
n∑

i=1

ai ∈ Rm, a ∈ A.

Set

di(a) =

{
δαi

n , αi 6= 0
0n, Otherwise.

(64)
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+ Utilities

D(a) := diag (d1(a), d2(a), · · · , dn(a)) (65)

Proposition 6.3
Utilities can be expressed as

ci(a) = ΞD(a)ai, i = 1, · · · , n. (66)
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+ Potential Function

Index Vector:

bi(a) := [1, · · · , 1︸ ︷︷ ︸
αi(a)

, 0, · · · , 0]︸ ︷︷ ︸
n−αi(s)

i = 1, 2, · · · , n.

Set

B(a) = [b1(a), b2(a), · · · , bn(a)] . (67)

Proposition 6.4
The potential function is

P(a) = ΞBT(a). (68)
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+ Facility-based System

Definition 6.5
1 A facility-based system, denoted as Σ =

(M,N, (Ai)i∈N ,P), where M = {1, 2, · · · ,m} is the set
of facilities, N = {1, 2, · · · , n} set of users, Ai ⊂ 2M,
the set of strategies of player i.

2 A :=
∏n

i=1Ai is the profile.
3 P : A → R is the global cost function.

Problem I: Find a∗ ∈ A, such that

P(a∗) = min
a∈A

P(a). (69)
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+ Problem I⇒ Problem II

Problem II: Design facility cost to turn the problem into
a congestion game.

Let |A| = `, Set A = {A1,A2, · · · ,A`}. Construct

BΞT = P, (70)

where

B =


B(A1)
B(A2)

...
B(A`)

 ; P =


P(A1)
P(A2)

...
P(A`)

 ,
B(a) is constructed as in (67).
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+ Main Result

Theorem 6.6
Given a facility-based system. It can be converted via de-
signed facility cost functions into a congestion game with
a global cost P(a) as its potential function, if and only if,
equation (70) has solution. Moreover, the solution is the
facility cost functions.

Y. Hao, S. Pan, Y. Qiao, D. Cheng, Cooperative control
vial congestion game, IEEE TAC, Vol. 63, No. 12, 4361-
4366§2018.
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Remark 6.7
1 A proper algorithm, say MBRA, makes it converging to

a pure Nash equilibrium.
2 Unique Nash equilibrium ⇒ minimum value.
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+ Learning Design

Method 1: Joint Strategy Fictitious Play(JSFP){
pai(t−1)

i (t) = ε,

pa∗i
i (t) = 1− ε.,

where 0 < ε < 1 is the inertia,

Vai
i (t) =

1
t

t−1∑
τ=1

ui(ai, a−i(τ)).

a∗i ∈ argmaxai∈Ai
Vai

i (t).

The global behavior converges almost surely to a pure
Nash equilibrium.
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Method 2: Log-linear learning

pai
i (t) =

e
1
T ui(ai,a−i(t−1))∑

a′i∈Ai

e
1
T ui(a′i ,a

′
−i(t−1))

,

where T ≥ 0 is a temperature coefficient.

The global behavior converges to a stationary distri-
bution

µa =
e

1
T P(a)∑

a′∈A
e

1
T P(a′)

,

which maximizes the potential function P(s).

C. Li, Y. Xing, F. He, D. Cheng, A strategic
learning algorithm for state-based games, Automat-
ica, Volume 113, 2020, 108615, ISSN 0005-1098,
https://doi.org/10.1016/j.automatica.2019.108615.
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VII. Concluding Remarks
+ General Remark

Game theory is a wide branch of mathematics. There
are many open problems for further study.
Game theoretic control is a growing new cross disci-
pline direction.
STP seems to be a powerful tool for finite games.

+ Some Topics For Further Study (by STP)

Verifying continuous potential game.
Learning algorithm design for game theoretic control.
Dynamics and control of networked Bayesian (incom-
plete information) game.
· · ·
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Thank you for your attention!

Question?
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